Group Theory

· IntroBooks
1.0
1 件のレビュー
電子書籍
40
ページ
利用可能
評価とレビューは確認済みではありません 詳細

この電子書籍について

 By many expert mathematicians, group theory is often addressed as a central part of mathematics. It finds its origins in geometry, since geometry describes groups in a detailed manner. The theory of polynomial equations also describes the procedure and principals of associating a finite group with any polynomial equation. This association is done in such a way that makes the group to encode information that can be used to solve the equations. This equation theory was developed by Galois. Finite group theory faced a number of changes in near past times as a result of classification of finite simple groups. The most important theorem when practicing group theory is theorem by Jordan holder. This theorem shows how any finite group is a combination of multiple finite simple groups.

Group theory is a term that is mainly used fields related to mathematics such as algebraic calculations. In abstract algebra, groups are referred as algebraic structures. Other terms of algebraic theories, such as rings, fields and vector spaces are also seen as group. Of course with some additional operations and axioms, mathematicians accept them as a group. The methods and procedures of group theory effect many parts and concepts of mathematics as well as algebra on a large scale. Linear algebraic groups and lie groups are two main branches or say categories of group theory that have advanced enough to be considered as a subject in their own perspectives.

評価とレビュー

1.0
1 件のレビュー

この電子書籍を評価する

ご感想をお聞かせください。

読書情報

スマートフォンとタブレット
AndroidiPad / iPhone 用の Google Play ブックス アプリをインストールしてください。このアプリがアカウントと自動的に同期するため、どこでもオンラインやオフラインで読むことができます。
ノートパソコンとデスクトップ パソコン
Google Play で購入したオーディブックは、パソコンのウェブブラウザで再生できます。
電子書籍リーダーなどのデバイス
Kobo 電子書籍リーダーなどの E Ink デバイスで読むには、ファイルをダウンロードしてデバイスに転送する必要があります。サポートされている電子書籍リーダーにファイルを転送する方法について詳しくは、ヘルプセンターをご覧ください。