Group Theory

· IntroBooks
1,0
1 recenzija
E-knjiga
40
str.
Ispunjava uvjete
Ocjene i recenzije nisu potvrđene  Saznajte više

O ovoj e-knjizi

 By many expert mathematicians, group theory is often addressed as a central part of mathematics. It finds its origins in geometry, since geometry describes groups in a detailed manner. The theory of polynomial equations also describes the procedure and principals of associating a finite group with any polynomial equation. This association is done in such a way that makes the group to encode information that can be used to solve the equations. This equation theory was developed by Galois. Finite group theory faced a number of changes in near past times as a result of classification of finite simple groups. The most important theorem when practicing group theory is theorem by Jordan holder. This theorem shows how any finite group is a combination of multiple finite simple groups.

Group theory is a term that is mainly used fields related to mathematics such as algebraic calculations. In abstract algebra, groups are referred as algebraic structures. Other terms of algebraic theories, such as rings, fields and vector spaces are also seen as group. Of course with some additional operations and axioms, mathematicians accept them as a group. The methods and procedures of group theory effect many parts and concepts of mathematics as well as algebra on a large scale. Linear algebraic groups and lie groups are two main branches or say categories of group theory that have advanced enough to be considered as a subject in their own perspectives.

Ocjene i recenzije

1,0
1 recenzija

Ocijenite ovu e-knjigu

Recite nam što mislite.

Informacije o čitanju

Pametni telefoni i tableti
Instalirajte aplikaciju Google Play knjige za Android i iPad/iPhone. Automatski se sinkronizira s vašim računom i omogućuje vam da čitate online ili offline gdje god bili.
Prijenosna i stolna računala
Audioknjige kupljene na Google Playu možete slušati pomoću web-preglednika na računalu.
Elektronički čitači i ostali uređaji
Za čitanje na uređajima s elektroničkom tintom, kao što su Kobo e-čitači, trebate preuzeti datoteku i prenijeti je na svoj uređaj. Slijedite detaljne upute u centru za pomoć za prijenos datoteka na podržane e-čitače.