Group Rings and Class Groups

·
· Oberwolfach Seminars Cartea 18 · Birkhäuser
Carte electronică
210
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

The first part of the book centers around the isomorphism problem for finite groups; i.e. which properties of the finite group G can be determined by the integral group ring ZZG ? The authors have tried to present the results more or less selfcontained and in as much generality as possible concerning the ring of coefficients. In the first section, the class sum correspondence and some related results are derived. This part is the proof of the subgroup rigidity theorem (Scott - Roggenkamp; Weiss) which says that a finite subgroup of the p-adic integral group ring of a finite p-group is conjugate to a subgroup of the finite group. A counterexample to the conjecture of Zassenhaus that group basis are rationally conjugate, is presented in the semilocal situation (Scott - Roggenkamp). To this end, an extended version of Clifford theory for p-adic integral group rings is presented. Moreover, several examples are given to demonstrate the complexity of the isomorphism problem. The second part of the book is concerned with various aspects of the structure of rings of integers as Galois modules. It begins with a brief overview of major results in the area; thereafter the majority of the text focuses on the use of the theory of Hopf algebras. It begins with a thorough and detailed treatment of the required foundational material and concludes with new and interesting applications to cyclotomic theory and to elliptic curves with complex multiplication. Examples are used throughout both for motivation, and also to illustrate new ideas.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.