Graphene Chemistry: Theoretical Perspectives

·
· John Wiley & Sons
Libro electrónico
496
Páginas
Las calificaciones y opiniones no están verificadas. Más información

Acerca de este libro electrónico

What are the chemical aspects of graphene as a novel 2D material and how do they relate to the molecular structure? This book addresses these important questions from a theoretical and computational standpoint.

Graphene Chemistry: Theoretical Perspectives presents recent exciting developments to correlate graphene’s properties and functions to its structure through state-of-the-art computational studies. This book focuses on the chemistry aspect of the structure-property relationship for many fascinating derivatives of graphene; various properties such as electronic structure, magnetism, and chemical reactivity, as well as potential applications in energy storage, catalysis, and nanoelectronics are covered. The book also includes two chapters with significant experimental portions, demonstrating how deep insights can be obtained by joint experimental and theoretical efforts.

Topics covered include:

  • Graphene ribbons: Edges, magnetism, preparation from unzipping, and electronic transport
  • Nanographenes: Properties, reactivity, and synthesis
  • Clar sextet rule in nanographene and graphene nanoribbons
  • Porous graphene, nanomeshes, and graphene-based architecture and assemblies
  • Doped graphene: Theory, synthesis, characterization and applications
  • Mechanisms of graphene growth in chemical vapor deposition
  • Surface adsorption and functionalization of graphene
  • Conversion between graphene and graphene oxide
  • Applications in gas separation, hydrogen storage, and catalysis

Graphene Chemistry: Theoretical Perspectives provides a useful overview for computational and theoretical chemists who are active in this field and those who have not studied graphene before. It is also a valuable resource for experimentalist scientists working on graphene and related materials, who will benefit from many concepts and properties discussed here.

Acerca del autor

Dr De-en Jiang, Chemical Sciences Division, Oak Ridge National Laboratory, USA
Dr Jiang has been working on computational study of graphene since 2006. In the past five years, he has published 15 papers in this topic which have been cited over 340 times. He has also written two book chapters on graphene-related topics. Using computational methods, he demonstrated the chemical reactivity of graphene's zigzag edge and showed the critical size for the onset of magnetism in nanographenes. Together with his colleagues, he was also the first to show a proof of concept for the extraordinary gas-separating power of porous graphene.

Dr Zhongfang Chen, Department of Chemistry, University of Puerto Rico, San Juan
Dr Chen is a computational chemist and computational nanomaterials scientist. He has published over 140 papers or book chapters and his papers have been cited more than 3200 times, giving him an h-index of 31. Nine papers have been highlighted by news media (Chem. & Eng. News and/or Nachrichten aus der Chemie, Nature China) and one article was featured by Nature Chemistry. Dr Chen has been involved in research on carbon graphene and its non-carbon analogues since 2008, and has published around 20 papers in this field so far. He is investigating the intrinsic properties of pristine and functionalized carbon and non-carbon graphenes, and exploring their applications in nanoelectronics, nanocatalysis and nanosensors.

Califica este libro electrónico

Cuéntanos lo que piensas.

Información de lectura

Smartphones y tablets
Instala la app de Google Play Libros para Android y iPad/iPhone. Como se sincroniza de manera automática con tu cuenta, te permite leer en línea o sin conexión en cualquier lugar.
Laptops y computadoras
Para escuchar audiolibros adquiridos en Google Play, usa el navegador web de tu computadora.
Lectores electrónicos y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos Kobo, deberás descargar un archivo y transferirlo a tu dispositivo. Sigue las instrucciones detalladas que aparecen en el Centro de ayuda para transferir los archivos a lectores de libros electrónicos compatibles.