Graph Theory: 6th edition

┬╖ Springer (print edition); Reinhard Diestel (eBooks)
рдИ-рдкреБрд╕реНрддрдХ
475
рдкреЗрдЬ
рдкрд╛рддреНрд░
рд░реЗрдЯрд┐рдВрдЧ рдЖрдгрд┐ рдкрд░реАрдХреНрд╖рдгреЗ рдпрд╛рдВрдЪреА рдкрдбрддрд╛рд│рдгреА рдХреЗрд▓реЗрд▓реА рдирд╛рд╣реА ┬ардЕрдзрд┐рдХ рдЬрд╛рдгреВрди рдШреНрдпрд╛

рдпрд╛ рдИ-рдкреБрд╕реНрддрдХрд╛рд╡рд┐рд╖рдпреА

Professional electronic edition, and student eBook edition (freely installable PDF with navigational links), available from diestel-graph-theory.com


This standard textbook of modern graph theory, now in its sixth edition, combines the authority of a classic with the engaging freshness of style that is the hallmark of active mathematics. It covers the core material of the subject with concise yet reliably complete proofs, while offering glimpses of more advanced methods in each field by one or two deeper results, again with proofs given in full detail.


The book can be used as a reliable text for an introductory course, as a graduate text, and for self-study.


New in this 6th edition:


Two new sections on how to apply the regularity lemma: counting lemma, removal lemma, and Szemer├йdi's theorem.

New chapter section on chi-boundedness.

Gallai's A-paths theorem.


New or substantially simplified proofs of:

┬а- Lov├бsz's perfect graph theorem

┬а- Seymour's 6-flow theorem

┬а- Tur├бn's theorem

┬а- Tutte's theorem about flow polynomials

┬а- the Chv├бtal-Erd├╢s theorem on Hamilton cycles

┬а- the tree-of-tangles theorem for graph minors (two new proofs, one canonical)

┬а- the 5-colour theorem

Several new proofs of classical theorems. Many new exercises.


From the reviews:┬а

тАЬThis outstanding book cannot be substituted with any other book on the present textbook market. It has every chance of becoming the standard textbook for graph theory.тАЭ Acta Scientiarum Mathematicarum┬а


"Deep, clear, wonderful. This is a serious book about the heart of graph theory. It has depth and integrity." Persi Diaconis & Ron Graham, SIAM Review┬а


тАЬThe book has received a very enthusiastic reception, which it amply deserves. A masterly elucidation of modern graph theory.тАЭ Bulletin of the Institute of Combinatorics and its Applications┬а


тАЬSucceeds dramaticallyтАж a hell of a good book.тАЭ MAA Reviews┬а


тАЬA highlight of the book is what is by far the best account in print of the Seymour-Robertson theory of graph minors.тАЭ Mathematika┬а


тАЬтАжlike listening to someone explain mathematics.тАЭ Bulletin of the AMS

рд▓реЗрдЦрдХрд╛рд╡рд┐рд╖рдпреА

Reinhard Diestel received a PhD from the University of Cambridge, following research 1983тАУ86 as a scholar of Trinity College under B├йla Bollob├бs. He was a Fellow of St.John's College, Cambridge, from 1986 to 1990. Research appointments and scholarships have taken him to Bielefeld (Germany), Oxford and the US. He became a professor in Chemnitz in 1994 and has held a chair at Hamburg since 1999.


Reinhard Diestel's main area of research is graph theory, including infinite graph theory. He has published numerous papers and two research monographs: Graph Decompositions (Oxford┬а1990); and Tangles: a┬аstructural approach to artificial intelligence in the empirical sciences (Cambridge 2024).


рдпрд╛ рдИ-рдкреБрд╕реНрддрдХрд▓рд╛ рд░реЗрдЯрд┐рдВрдЧ рджреНрдпрд╛

рддреБрдореНрд╣рд╛рд▓рд╛ рдХрд╛рдп рд╡рд╛рдЯрддреЗ рддреЗ рдЖрдореНрд╣рд╛рд▓рд╛ рд╕рд╛рдВрдЧрд╛.

рд╡рд╛рдЪрди рдорд╛рд╣рд┐рддреА

рд╕реНрдорд╛рд░реНрдЯрдлреЛрди рдЖрдгрд┐ рдЯреЕрдмрд▓реЗрдЯ
Android рдЖрдгрд┐ iPad/iPhone рд╕рд╛рдареА Google Play рдмреБрдХ рдЕтАНреЕрдк рдЗрдВрд╕реНтАНрдЯреЙрд▓ рдХрд░рд╛. рд╣реЗ рддреБрдордЪреНтАНрдпрд╛ рдЦрд╛рддреНтАНрдпрд╛рдиреЗ рдЖрдкреЛрдЖрдк рд╕рд┐рдВрдХ рд╣реЛрддреЗ рдЖрдгрд┐ рддреБрдореНтАНрд╣реА рдЬреЗрдереЗ рдХреБрдареЗ рдЕрд╕рд╛рд▓ рддреЗрдереВрди рддреБрдореНтАНрд╣рд╛рд▓рд╛ рдСрдирд▓рд╛рдЗрди рдХрд┐рдВрд╡рд╛ рдСрдлрд▓рд╛рдЗрди рд╡рд╛рдЪрдгреНтАНрдпрд╛рдЪреА рдЕрдиреБрдорддреА рджреЗрддреЗ.
рд▓реЕрдкрдЯреЙрдк рдЖрдгрд┐ рдХреЙрдВрдкреНрдпреБрдЯрд░
рддреБрдореНрд╣реА рддреБрдордЪреНрдпрд╛ рдХрд╛рдБрдкреНрдпреБрдЯрд░рдЪрд╛ рд╡реЗрдм рдмреНрд░рд╛рдЙрдЭрд░ рд╡рд╛рдкрд░реВрди Google Play рд╡рд░ рдЦрд░реЗрджреА рдХреЗрд▓реЗрд▓реА рдСрдбрд┐рдУрдмреБрдХ рдРрдХреВ рд╢рдХрддрд╛.
рдИрд╡рд╛рдЪрдХ рдЖрдгрд┐ рдЗрддрд░ рдбрд┐рд╡реНрд╣рд╛рдЗрд╕реЗрд╕
Kobo eReaders рд╕рд╛рд░рдЦреНрдпрд╛ рдИ-рдЗрдВрдХ рдбрд┐рд╡реНтАНрд╣рд╛рдЗрд╕рд╡рд░ рд╡рд╛рдЪрдгреНтАНрдпрд╛рд╕рд╛рдареА, рддреБрдореНрд╣реА рдПрдЦрд╛рджреА рдлрд╛рдЗрд▓ рдбрд╛рдЙрдирд▓реЛрдб рдХрд░реВрди рддреА рддреБрдордЪреНтАНрдпрд╛ рдбрд┐рд╡реНтАНрд╣рд╛рдЗрд╕рд╡рд░ рдЯреНрд░рд╛рдиреНрд╕рдлрд░ рдХрд░рдгреЗ рдЖрд╡рд╢реНрдпрдХ рдЖрд╣реЗ. рд╕рдкреЛрд░реНрдЯ рдЕрд╕рд▓реЗрд▓реНрдпрд╛ eReaders рд╡рд░ рдлрд╛рдЗрд▓ рдЯреНрд░рд╛рдиреНрд╕рдлрд░ рдХрд░рдгреНрдпрд╛рд╕рд╛рдареА, рдорджрдд рдХреЗрдВрджреНрд░ рдордзреАрд▓ рддрдкрд╢реАрд▓рд╡рд╛рд░ рд╕реВрдЪрдирд╛ рдлреЙрд▓реЛ рдХрд░рд╛.