Glass Nanocomposites: Synthesis, Properties and Applications

· ·
· William Andrew
eBook
408
페이지
적용 가능
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

Glass Nanocomposites: Synthesis, Properties and Applications provides the latest information on a rapidly growing field of specialized materials, bringing light to new research findings that include a growing number of technologies and applications. With this growth, a new need for deep understanding of the synthesis methods, composite structure, processing and application of glass nanocomposites has emerged. In the book, world renowned experts in the field, Professors Karmakar, Rademann, and Stepanov, fill the knowledge gap, building a bridge between the areas of nanoscience, photonics, and glass technology. The book covers the fundamentals, synthesis, processing, material properties, structure property correlation, interpretation thereof, characterization, and a wide range of applications of glass nanocomposites in many different devices and branches of technology. Recent developments and future directions of all types of glass nanocomposites, such as metal-glasses (e.g., metal nanowire composites, nanoglass-mesoporous silica composites), semiconductor-glass and ceramic-glass nanocomposites, as well as oxide and non-oxide glasses, are also covered in great depth. Each chapter is logically structured in order to increase coherence, with each including question sets as exercises for a deeper understanding of the text. - Provides comprehensive and up-to-date knowledge and literature review for both the oxide and non-oxide glass nanocomposites (i.e., practically all types of glass nanocomposites) - Reviews a wide range of synthesis types, properties, characterization, and applications of diverse types of glass nanocomposites - Presents future directions of glass nanocomposites for researchers and engineers, as well as question sets for use in university courses

저자 정보

Professor Karmakar has over 32 years’ of research experience on the preparation, characterization and property evaluation of different types of glass nanocomposites, glasses (viz. chalcogenide, silicate, borosilicate, fluorophosphate, phosphate, borate, silica, etc.), glass-ceramics, ceramic oxide powders, gels etc. His notable R&D contributions are in the process technology development of nanometal- and semiconductor-glass hybrid nanocomposites, Nd- and Er-doped phosphate laser glass, phosphate based radiation sensitive (RPL) glass, high density radiation resistant lead silicate (RSW) glass, optical glass, ultra-low expansion transparent glass-ceramics, machineable glass-ceramics, ferroelectric glass-ceramic nanocomposite, rare-earth (RE) doped luminescent glasses and glass-ceramics, rare-earth doped nanocrystalline nonlinear optical (NLO) glass-ceramic nanocomposites, thermally cyclable glass-based solid oxide fuel cell (SOFC) sealants, and high purity silica glass by sol-gel technique.

Prof. Dr. Klaus Rademann has over 30 years of research experience on the preparation, characterization and property evaluation of different types of nanoparticles in the gas phase, nanoparticle synthesis, nanoparticle growth mechanisms, electronic structure determination, catalysis, and electronic energy transfer on fractals. He has also studied electron and energy transfer processes in porous VYCOR glass by employing spectroscopy. During the last 8 years he succeeded in the fabrication of long term stable soda lime silicate glasses doped with metal nanoparticles and their respective oxides for optical applications. Rare-earth (RE) doped luminescent glasses and glass-ceramics, nanometal- and semiconductor-glass hybrid nanocomposites are in the focus of his current studies.

Prof. Stepanov has over 25 years’ research, teaching and professional experience in the Nanoscience, particularly in the area of Glass Nanocomposites. He was awarded the degree of Doctor of Science for his work on synthesis and optical properties of metamaterials with metal nanoparticles. His research interests are Nanooptics, Nanoplasmonics, Metal nanoparticles, Porous materials, Metamaterials, Nonlinear optics, Laser annealing and Ion implantation.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.