Geometry of Continued Fractions: Edition 2

· Algorithms and Computation in Mathematics Buch 26 · Springer Nature
E-Book
451
Seiten
Bewertungen und Rezensionen werden nicht geprüft  Weitere Informationen

Über dieses E-Book

This book introduces a new geometric vision of continued fractions. It covers several applications to questions related to such areas as Diophantine approximation, algebraic number theory, and toric geometry. The second edition now includes a geometric approach to Gauss Reduction Theory, classification of integer regular polygons and some further new subjects.

Traditionally a subject of number theory, continued fractions appear in dynamical systems, algebraic geometry, topology, and even celestial mechanics. The rise of computational geometry has resulted in renewed interest in multidimensional generalizations of continued fractions. Numerous classical theorems have been extended to the multidimensional case, casting light on phenomena in diverse areas of mathematics.

The reader will find an overview of current progress in the geometric theory of multidimensional continued fractions accompanied by currently open problems. Whenever possible, we illustrate geometric constructions with figures and examples. Each chapter has exercises useful for undergraduate or graduate courses.


Autoren-Profil

Oleg Karpenkov is a mathematician at the University of Liverpool (UK), working in the general area of discrete geometry and its applications. More specifically, his research interests include geometry of numbers, discrete and semi-discrete differential geometry and self-stressed configurations of graphs. Oleg has completed his Ph.D. at Moscow State University under the supervision of Vladimir Arnold in 2005. Further he held several postdoctoral positions in Paris (Fellowship of the Mairie de Paris), Leiden, and Graz (Lise Meitner Fellowship) before arriving in Liverpool in 2012. In 2013 he published a book "Geometry of Continued Fractions" (its extended second edition will be available soon). Currently his Erdos number is 3.


Dieses E-Book bewerten

Deine Meinung ist gefragt!

Informationen zum Lesen

Smartphones und Tablets
Nachdem du die Google Play Bücher App für Android und iPad/iPhone installiert hast, wird diese automatisch mit deinem Konto synchronisiert, sodass du auch unterwegs online und offline lesen kannst.
Laptops und Computer
Im Webbrowser auf deinem Computer kannst du dir Hörbucher anhören, die du bei Google Play gekauft hast.
E-Reader und andere Geräte
Wenn du Bücher auf E-Ink-Geräten lesen möchtest, beispielsweise auf einem Kobo eReader, lade eine Datei herunter und übertrage sie auf dein Gerät. Eine ausführliche Anleitung zum Übertragen der Dateien auf unterstützte E-Reader findest du in der Hilfe.