Geometry by Its History

· Springer Science & Business Media
Sách điện tử
440
Trang
Điểm xếp hạng và bài đánh giá chưa được xác minh  Tìm hiểu thêm

Giới thiệu về sách điện tử này

In this textbook the authors present first-year geometry roughly in the order in which it was discovered. The first five chapters show how the ancient Greeks established geometry, together with its numerous practical applications, while more recent findings on Euclidian geometry are discussed as well. The following three chapters explain the revolution in geometry due to the progress made in the field of algebra by Descartes, Euler and Gauss. Spatial geometry, vector algebra and matrices are treated in chapters 9 and 10. The last chapter offers an introduction to projective geometry, which emerged in the 19thcentury.

Complemented by numerous examples, exercises, figures and pictures, the book offers both motivation and insightful explanations, and provides stimulating and enjoyable reading for students and teachers alike.

Giới thiệu tác giả

Alexander Ostermann has published numerous research articles as well as several books with Springer. He is a professor in the Department of Mathematics at the University of Innsbruck, Austria.

Gerhard Wanner is the former President of Section VII of the Swiss Academy of Natural Sciences, former Head of Department of Mathematics at the University of Geneva, and former President of the Swiss Mathematical Society. He is the author of several books with Springer, including Analysis by its History, written together with Ernst Hairer.

Xếp hạng sách điện tử này

Cho chúng tôi biết suy nghĩ của bạn.

Đọc thông tin

Điện thoại thông minh và máy tính bảng
Cài đặt ứng dụng Google Play Sách cho AndroidiPad/iPhone. Ứng dụng sẽ tự động đồng bộ hóa với tài khoản của bạn và cho phép bạn đọc trực tuyến hoặc ngoại tuyến dù cho bạn ở đâu.
Máy tính xách tay và máy tính
Bạn có thể nghe các sách nói đã mua trên Google Play thông qua trình duyệt web trên máy tính.
Thiết bị đọc sách điện tử và các thiết bị khác
Để đọc trên thiết bị e-ink như máy đọc sách điện tử Kobo, bạn sẽ cần tải tệp xuống và chuyển tệp đó sang thiết bị của mình. Hãy làm theo hướng dẫn chi tiết trong Trung tâm trợ giúp để chuyển tệp sang máy đọc sách điện tử được hỗ trợ.