Geometry VI: Riemannian Geometry

· Encyclopaedia of Mathematical Sciences Buku 91 · Springer Science & Business Media
2,0
1 ulasan
eBook
504
Halaman
Rating dan ulasan tidak diverifikasi  Pelajari Lebih Lanjut

Tentang eBook ini

The original Russian edition of this book is the fifth in my series "Lectures on Geometry. " Therefore, to make the presentation relatively independent and self-contained in the English translation, I have added supplementary chapters in a special addendum (Chaps. 3Q-36), in which the necessary facts from manifold theory and vector bundle theory are briefly summarized without proofs as a rule. In the original edition, the book is divided not into chapters but into lec tures. This is explained by its origin as classroom lectures that I gave. The principal distinction between chapters and lectures is that the material of each chapter should be complete to a certain extent and the length of chapters can differ, while, in contrast, all lectures should be approximately the same in length and the topic of any lecture can change suddenly in the middle. For the series "Encyclopedia of Mathematical Sciences," the origin of a book has no significance, and the name "chapter" is more usual. Therefore, the name of subdivisions was changed in the translation, although no structural surgery was performed. I have also added a brief bibliography, which was absent in the original edition. The first ten chapters are devoted to the geometry of affine connection spaces. In the first chapter, I present the main properties of geodesics in these spaces. Chapter 2 is devoted to the formalism of covariant derivatives, torsion tensor, and curvature tensor. The major part of Chap.

Rating dan ulasan

2,0
1 ulasan

Beri rating eBook ini

Sampaikan pendapat Anda.

Informasi bacaan

Smartphone dan tablet
Instal aplikasi Google Play Buku untuk Android dan iPad/iPhone. Aplikasi akan disinkronkan secara otomatis dengan akun Anda dan dapat diakses secara online maupun offline di mana saja.
Laptop dan komputer
Anda dapat mendengarkan buku audio yang dibeli di Google Play menggunakan browser web komputer.
eReader dan perangkat lainnya
Untuk membaca di perangkat e-ink seperti Kobo eReaders, Anda perlu mendownload file dan mentransfernya ke perangkat Anda. Ikuti petunjuk Pusat bantuan yang mendetail untuk mentransfer file ke eReaders yang didukung.