Geometry III: Theory of Surfaces

·
· Encyclopaedia of Mathematical Sciences Cartea 48 · Springer Science & Business Media
Carte electronică
258
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

The original version of this article was written more than fiveyears ago with S. Z. Shefel',a profound and original mathematician who died in 1984. Sincethen the geometry of surfaces has continued to be enriched with ideas and results. This has required changes and additions, but has not influenced the character of the article, the design ofwhich originated with Shefel'. Without knowing to what extent Shefel' would have approved the changes, I should nevertheless like to dedicate this article to his memory. (Yu. D. Burago) We are trying to state the qualitative questions of the theory of surfaces in Euclidean spaces in the form in which they appear to the authors at present. This description does not entirely correspond to the historical development of the subject. The theory of surfaces was developed in the first place mainly as the 3 theory of surfaces in three-dimensional Euclidean space E ; however, it makes sense to begin by considering surfaces F in Euclidean spaces of any dimension n~ 3. This approach enables us, in particular, to put in a new light some 3 unsolved problems of this developed (and in the case of surfaces in E fairly complete) theory, and in many cases to refer to the connections with the present stage ofdevelopment of the theory of multidimensional submanifolds. The leading question of the article is the problem of the connection between classes of metrics and classes of surfaces in En.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.