Geometries, Codes and Cryptography

· ·
· CISM International Centre for Mechanical Sciences Livre 313 · Springer
E-book
228
Pages
Les notes et avis ne sont pas vérifiés. En savoir plus

À propos de cet e-book

The general problem studied by information theory is the reliable transmission of information through unreliable channels. Channels can be unreliable either because they are disturbed by noise or because unauthorized receivers intercept the information transmitted. In the first case, the theory of error-control codes provides techniques for correcting at least part of the errors caused by noise. In the second case cryptography offers the most suitable methods for coping with the many problems linked with secrecy and authentication. Now, both error-control and cryptography schemes can be studied, to a large extent, by suitable geometric models, belonging to the important field of finite geometries. This book provides an update survey of the state of the art of finite geometries and their applications to channel coding against noise and deliberate tampering. The book is divided into two sections, "Geometries and Codes" and "Geometries and Cryptography". The first part covers such topicsas Galois geometries, Steiner systems, Circle geometry and applications to algebraic coding theory. The second part deals with unconditional secrecy and authentication, geometric threshold schemes and applications of finite geometry to cryptography. This volume recommends itself to engineers dealing with communication problems, to mathematicians and to research workers in the fields of algebraic coding theory, cryptography and information theory.

Donner une note à cet e-book

Dites-nous ce que vous en pensez.

Informations sur la lecture

Smartphones et tablettes
Installez l'application Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play à l'aide du navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour lire sur des appareils e-Ink, comme les liseuses Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du Centre d'aide pour transférer les fichiers sur les liseuses compatibles.