Geometries, Codes and Cryptography

· ·
· CISM International Centre for Mechanical Sciences Кніга 313 · Springer
Электронная кніга
228
Старонкі
Ацэнкі і водгукі не спраўджаны  Даведацца больш

Пра гэту электронную кнігу

The general problem studied by information theory is the reliable transmission of information through unreliable channels. Channels can be unreliable either because they are disturbed by noise or because unauthorized receivers intercept the information transmitted. In the first case, the theory of error-control codes provides techniques for correcting at least part of the errors caused by noise. In the second case cryptography offers the most suitable methods for coping with the many problems linked with secrecy and authentication. Now, both error-control and cryptography schemes can be studied, to a large extent, by suitable geometric models, belonging to the important field of finite geometries. This book provides an update survey of the state of the art of finite geometries and their applications to channel coding against noise and deliberate tampering. The book is divided into two sections, "Geometries and Codes" and "Geometries and Cryptography". The first part covers such topicsas Galois geometries, Steiner systems, Circle geometry and applications to algebraic coding theory. The second part deals with unconditional secrecy and authentication, geometric threshold schemes and applications of finite geometry to cryptography. This volume recommends itself to engineers dealing with communication problems, to mathematicians and to research workers in the fields of algebraic coding theory, cryptography and information theory.

Ацаніце гэту электронную кнігу

Падзяліцеся сваімі меркаваннямі.

Чытанне інфармацыb

Смартфоны і планшэты
Усталюйце праграму "Кнігі Google Play" для Android і iPad/iPhone. Яна аўтаматычна сінхранізуецца з вашым уліковым запісам і дазваляе чытаць у інтэрнэце або па-за сеткай, дзе б вы ні былі.
Ноўтбукі і камп’ютары
У вэб-браўзеры камп’ютара можна слухаць аўдыякнігі, купленыя ў Google Play.
Электронныя кнiгi i iншыя прылады
Каб чытаць на такіх прыладах для электронных кніг, як, напрыклад, Kobo, трэба спампаваць файл і перанесці яго на сваю прыладу. Выканайце падрабязныя інструкцыі, прыведзеныя ў Даведачным цэнтры, каб перанесці файлы на прылады, якія падтрымліваюцца.