Geometrical Charged-Particle Optics

· Springer Series in Optical Sciences 142권 · Springer
5.0
리뷰 1개
eBook
414
페이지
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

The resolution of any imaging microscope is ultimately limited by di?raction and can never be signi?cantly smaller than the wavelength ? of the ima- forming wave, as realized by Abbe [1] in 1870. In a visionary statement, he argued that there might be some yet unknown radiation with a shorter wa- length than that of light enabling a higher resolution at some time in the future. The discovery of the electron provided such a radiation because its wavelength at accelerating voltages above 1 kV is smaller than the radius of the hydrogen atom. The wave property of the electron was postulated in 1924 by de Broglie [2]. Geometrical electron optics started in 1926 when Busch [3] demonstrated that the magnetic ?eld of a rotationally symmetric coil acts as a converging lens for electrons. The importance of this discovery was s- sequently conceived by Knoll and Ruska [4] who had the idea to build an electron microscope by combining a sequence of such lenses. Within a short period of time, the resolution of the electron microscope surpassed that of the light microscope, as depicted in Fig. 1. This success resulted primarily from theextremelysmallwavelengthoftheelectronsratherthanfromthequalityof standard electron lenses which limit the attainable resolution to about 100?. Therefore, shortening the wavelength by increasing the voltage was the most convenient method for improving the resolution. However, radiation damage by knock-on displacement of atoms limits severely the application of hi- voltage electron microscopes.

평점 및 리뷰

5.0
리뷰 1개

저자 정보

Harald H. Rose is an emeritus Professor of the Technical University Darmstadt, Germany. He received his Ph.D. degree in 1964 from this University with a thesis on theoretical electron optics under the supervision of Professor Otto Scherzer. From 1976-1980 he was a Principal Research Scientist at The New York State Department of Health and spend sabbaticals in 1973/74 at the E. Fermi Institute, Universiy of Chicago and 1995/96 at Cornell and at the University of Maryland. From 1980-2000 he was Professor at the Department of Physics of the University of Darmstadt, After his retirement he was a Research Fellow at the Department of Materials Science, Oak Ridge National Laboratory (2000/1), Department of Materials Science, Argonne National Laboratory (2001/2), and at the Advanced Light Source, Lawrence Berkeley National Laboratory (2003-2005). His main research activities are in theoretical electron optics, especially aberration correction, theory of electron scattering and image formation in EM. He has published more than 200 reviewed articles in scientific journals, 10 major review articles and is inventor of 105 patents on scientific instruments and electron optical components partly manufactured by various companies. Honorary membership in scientific societies: Honorary member of the Microscopy Society of America, the German Society of Electron Microscopy, and of the 141 Committee of the Japanese Society for the Promotion of Sciences. Awards: Distinguished Scientist Award 2003 of the Microscopy Society of America, Honorary Professor of the Jiaotong University, Xian, China (since 1987), 2005 Award of the 141 Committee of the Japanese Society for the Promotion of Sciences, Karl Heinz Beckurts Award 2006 together with Dr. Maximilian Haider and Professor Knut Urban.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.