Geometrical Charged-Particle Optics

· Springer Series in Optical Sciences 142 巻 · Springer
5.0
1 件のレビュー
電子書籍
414
ページ
評価とレビューは確認済みではありません 詳細

この電子書籍について

The resolution of any imaging microscope is ultimately limited by di?raction and can never be signi?cantly smaller than the wavelength ? of the ima- forming wave, as realized by Abbe [1] in 1870. In a visionary statement, he argued that there might be some yet unknown radiation with a shorter wa- length than that of light enabling a higher resolution at some time in the future. The discovery of the electron provided such a radiation because its wavelength at accelerating voltages above 1 kV is smaller than the radius of the hydrogen atom. The wave property of the electron was postulated in 1924 by de Broglie [2]. Geometrical electron optics started in 1926 when Busch [3] demonstrated that the magnetic ?eld of a rotationally symmetric coil acts as a converging lens for electrons. The importance of this discovery was s- sequently conceived by Knoll and Ruska [4] who had the idea to build an electron microscope by combining a sequence of such lenses. Within a short period of time, the resolution of the electron microscope surpassed that of the light microscope, as depicted in Fig. 1. This success resulted primarily from theextremelysmallwavelengthoftheelectronsratherthanfromthequalityof standard electron lenses which limit the attainable resolution to about 100?. Therefore, shortening the wavelength by increasing the voltage was the most convenient method for improving the resolution. However, radiation damage by knock-on displacement of atoms limits severely the application of hi- voltage electron microscopes.

評価とレビュー

5.0
1 件のレビュー

著者について

Harald H. Rose is an emeritus Professor of the Technical University Darmstadt, Germany. He received his Ph.D. degree in 1964 from this University with a thesis on theoretical electron optics under the supervision of Professor Otto Scherzer. From 1976-1980 he was a Principal Research Scientist at The New York State Department of Health and spend sabbaticals in 1973/74 at the E. Fermi Institute, Universiy of Chicago and 1995/96 at Cornell and at the University of Maryland. From 1980-2000 he was Professor at the Department of Physics of the University of Darmstadt, After his retirement he was a Research Fellow at the Department of Materials Science, Oak Ridge National Laboratory (2000/1), Department of Materials Science, Argonne National Laboratory (2001/2), and at the Advanced Light Source, Lawrence Berkeley National Laboratory (2003-2005). His main research activities are in theoretical electron optics, especially aberration correction, theory of electron scattering and image formation in EM. He has published more than 200 reviewed articles in scientific journals, 10 major review articles and is inventor of 105 patents on scientific instruments and electron optical components partly manufactured by various companies. Honorary membership in scientific societies: Honorary member of the Microscopy Society of America, the German Society of Electron Microscopy, and of the 141 Committee of the Japanese Society for the Promotion of Sciences. Awards: Distinguished Scientist Award 2003 of the Microscopy Society of America, Honorary Professor of the Jiaotong University, Xian, China (since 1987), 2005 Award of the 141 Committee of the Japanese Society for the Promotion of Sciences, Karl Heinz Beckurts Award 2006 together with Dr. Maximilian Haider and Professor Knut Urban.

この電子書籍を評価する

ご感想をお聞かせください。

読書情報

スマートフォンとタブレット
AndroidiPad / iPhone 用の Google Play ブックス アプリをインストールしてください。このアプリがアカウントと自動的に同期するため、どこでもオンラインやオフラインで読むことができます。
ノートパソコンとデスクトップ パソコン
Google Play で購入したオーディブックは、パソコンのウェブブラウザで再生できます。
電子書籍リーダーなどのデバイス
Kobo 電子書籍リーダーなどの E Ink デバイスで読むには、ファイルをダウンロードしてデバイスに転送する必要があります。サポートされている電子書籍リーダーにファイルを転送する方法について詳しくは、ヘルプセンターをご覧ください。