Frontiers of Statistics and Data Science

·
· Springer Nature
E-book
213
Pages
Les notes et avis ne sont pas vérifiés. En savoir plus

À propos de cet e-book

This book addresses a diverse set of topics of contemporary interest in statistics and data science such as biostatistics and machine learning. Each chapter provides an overview of the topic under discussion, so that any reader with an understanding of graduate-level statistics, but not necessarily with a prior background on the topic should be able to get a summary of developments in the field. These chapters serve as basic introductory references for new researchers in these fields, as well as the basis of teaching a course on the topic, or with a part of the course on topics of precision medicine, deep learning, high-dimensional central limit theorems, multivariate rank testing, R programming for statistics, Bayesian nonparametrics, large deviation asymptotics, spatio-temporal modeling of Covid-19, statistical network models, hidden Markov models, statistical record linkage analysis. The edited volume will be most useful for graduate students looking for an overview of any of the covered topics for their research and for instructors for developing certain courses by including any of the topics as part of the course. Students enrolled in a course covering any of the included topics can also benefit from these chapters.

À propos de l'auteur

Subhashis Ghoshal is the Goodnight Distinguished Professor of Statistics at North Carolina State University. He is a Fellow of IMS, ASA and ISBA, and winner of DeGroot Prize for the best book in Statistical Science, 2019, for his book “Fundamentals of Nonparametric Bayesian Inference”. He has written over 150 research articles and advised over 30 doctoral students. He has a variety of research interests including Bayesian inference, nonparametrics, high-dimensional statistics, differential equation models, image processing, and others. His research has been funded NSF, ARO, NSA, Samsung and others, including the prestigious NSF Career Award.

Anindya Roy is a Professor of Statistics at the University of Maryland, Baltimore County. He also holds an appointment with the US Census Bureau. He is a Fellow of ASA, and author of a popular textbook “Linear Algebra and Matrix Analysis for Statistics”. His research interests include time series analysis, Bayesian statistics, high-dimensional statistics, data confidentiality, and others. He has written over 80 research articles and advised over 25 doctoral students. His research has been funded by NSF, NIH, and other funding agencies.

Donner une note à cet e-book

Dites-nous ce que vous en pensez.

Informations sur la lecture

Smartphones et tablettes
Installez l'application Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play à l'aide du navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour lire sur des appareils e-Ink, comme les liseuses Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du Centre d'aide pour transférer les fichiers sur les liseuses compatibles.