Fractional Partial Differential Equations

· World Scientific
E-kirja
320
sivuja
Kelvollinen
Arvioita ja arvosteluja ei ole vahvistettu Lue lisää

Tietoa tästä e-kirjasta

This monograph offers a comprehensive exposition of the theory surrounding time-fractional partial differential equations, featuring recent advancements in fundamental techniques and results. The topics covered encompass crucial aspects of the theory, such as well-posedness, regularity, approximation, and optimal control. The book delves into the intricacies of fractional Navier-Stokes equations, fractional Rayleigh-Stokes equations, fractional Fokker-Planck equations, and fractional Schrödinger equations, providing a thorough exploration of these subjects. Numerous real-world applications associated with these equations are meticulously examined, enhancing the practical relevance of the presented concepts.The content in this monograph is based on the research works carried out by the author and other excellent experts during the past five years. Rooted in the latest advancements, it not only serves as a valuable resource for understanding the theoretical foundations but also lays the groundwork for delving deeper into the subject and navigating the extensive research landscape. Geared towards researchers, graduate students, and PhD scholars specializing in differential equations, applied analysis, and related research domains, this monograph facilitates a nuanced understanding of time-fractional partial differential equations and their broader implications.

Arvioi tämä e-kirja

Kerro meille mielipiteesi.

Tietoa lukemisesta

Älypuhelimet ja tabletit
Asenna Google Play Kirjat ‑sovellus Androidille tai iPadille/iPhonelle. Se synkronoituu automaattisesti tilisi kanssa, jolloin voit lukea online- tai offline-tilassa missä tahansa oletkin.
Kannettavat ja pöytätietokoneet
Voit kuunnella Google Playsta ostettuja äänikirjoja tietokoneesi selaimella.
Lukulaitteet ja muut laitteet
Jos haluat lukea kirjoja sähköisellä lukulaitteella, esim. Kobo-lukulaitteella, sinun täytyy ladata tiedosto ja siirtää se laitteellesi. Siirrä tiedostoja tuettuihin lukulaitteisiin seuraamalla ohjekeskuksen ohjeita.