Fourier Analysis in Convex Geometry

· Mathematical Surveys and Monographs 116 巻 · American Mathematical Soc.
電子曞籍
170
ペヌゞ
評䟡ずレビュヌは確認枈みではありたせん 詳现

この電子曞籍に぀いお

The study of the geometry of convex bodies based on information about sections and projections of these bodies has important applications in many areas of mathematics and science. In this book, a new Fourier analysis approach is discussed. The idea is to express certain geometric properties of bodies in terms of Fourier analysis and to use harmonic analysis methods to solve geometric problems.

One of the results discussed in the book is Ball's theorem, establishing the exact upper bound for the  -dimensional volume of hyperplane sections of the  -dimensional unit cube (it is      for each  ). Another is the Busemann-Petty problem: if   and   are two convex origin-symmetric  -dimensional bodies and the  -dimensional volume of each central hyperplane section of   is less than the  -dimensional volume of the corresponding section of  , is it true that the  -dimensional volume of   is less than the volume of  ? (The answer is positive for   and negative for  .)

The book is suitable for graduate students and researchers interested in geometry, harmonic and functional analysis, and probability. Prerequisites for reading this book include basic real, complex, and functional analysis.

著者に぀いお

Alexander Koldobsky, University of Missouri, Columbia, MO, USA.

この電子曞籍を評䟡する

ご感想をお聞かせください。

読曞情報

スマヌトフォンずタブレット
Android や iPad / iPhone 甚の Google Play ブックス アプリをむンストヌルしおください。このアプリがアカりントず自動的に同期するため、どこでもオンラむンやオフラむンで読むこずができたす。
ノヌトパ゜コンずデスクトップ パ゜コン
Google Play で賌入したオヌディブックは、パ゜コンのりェブブラりザで再生できたす。
電子曞籍リヌダヌなどのデバむス
Kobo 電子曞籍リヌダヌなどの E Ink デバむスで読むには、ファむルをダりンロヌドしおデバむスに転送する必芁がありたす。サポヌトされおいる電子曞籍リヌダヌにファむルを転送する方法に぀いお詳しくは、ヘルプセンタヌをご芧ください。