Fourier Analysis

· Crm Proceedings & Lecture Notes Книга 31 · American Mathematical Soc.
4,0
1 отзыв
Электронная книга
222
Количество страниц
Оценки и отзывы не проверены. Подробнее…

Об электронной книге

Fourier analysis encompasses a variety of perspectives and techniques. This volume presents the real variable methods of Fourier analysis introduced by Calderon and Zygmund. The text was born from a graduate course taught at the Universidad Autonoma de Madrid and incorporates lecture notes from a course taught by Jose Luis Rubio de Francia at the same university. Motivated by the study of ""Fourier"" series and integrals, classical topics are introduced, such as the Hardy-Littlewood maximal function and the Hilbert transform. The remaining portions of the text are devoted to the study of singular integral operators and multipliers. Both classical aspects of the theory and more recent developments, such as weighted inequalities, $H^1$, $BMO$ spaces, and the $T1$ theorem, are discussed.Chapter 1 presents a review of Fourier series and integrals; Chapters 2 and 3 introduce two operators that are basic to the field: the Hardy-Littlewood maximal function and the Hilbert transform. Chapters 4 and 5 discuss singular integrals, including modern generalizations. Chapter 6 studies the relationship between $H^1$, $BMO$, and singular integrals; and Chapter 7 presents the elementary theory of weighted norm inequalities. Chapter 8 discusses Littlewood-Paley theory, which had developments that resulted in a number of applications. The final chapter concludes with an important result, the $T1$ theorem, which has been of crucial importance in the field.This volume has been updated and translated from the Spanish edition that was published in 1995. Minor changes have been made to the core of the book; however, the sections, 'Notes and Further Results' have been considerably expanded and incorporate new topics, results, and references. It is geared toward graduate students seeking a concise introduction to the main aspects of the classical theory of singular operators and multipliers. Prerequisites include basic knowledge in Lebesgue integrals and functional analysis.

Оценки и отзывы

4,0
1 отзыв

Оцените электронную книгу

Поделитесь с нами своим мнением.

Где читать книги

Смартфоны и планшеты
Установите приложение Google Play Книги для Android или iPad/iPhone. Оно синхронизируется с вашим аккаунтом автоматически, и вы сможете читать любимые книги онлайн и офлайн где угодно.
Ноутбуки и настольные компьютеры
Слушайте аудиокниги из Google Play в веб-браузере на компьютере.
Устройства для чтения книг
Чтобы открыть книгу на таком устройстве для чтения, как Kobo, скачайте файл и добавьте его на устройство. Подробные инструкции можно найти в Справочном центре.