Foundations of Hyperbolic Manifolds: Edition 3

· Graduate Texts in Mathematics 149. liburua · Springer Nature
Liburu elektronikoa
800
orri
Balorazioak eta iritziak ez daude egiaztatuta  Lortu informazio gehiago

Liburu elektroniko honi buruz

This book is an exposition of the theoretical foundations of hyperbolic manifolds. It is intended to be used both as a textbook and as a reference. This third edition greatly expands upon the second with an abundance of additional content, including a section dedicated to arithmetic hyperbolic groups. Over 40 new lemmas, theorems, and corollaries feature, along with more than 70 additional exercises. Color adds a new dimension to figures throughout.The book is divided into three parts. The first part is concerned with hyperbolic geometry and discrete groups. The main results are the characterization of hyperbolic reflection groups and Euclidean crystallographic groups. The second part is devoted to the theory of hyperbolic manifolds. The main results are Mostow’s rigidity theorem and the determination of the global geometry of hyperbolic manifolds of finite volume. The third part integrates the first two parts in a development of the theory of hyperbolic orbifolds. The main result is Poincaré’s fundamental polyhedron theorem.

The exposition is at the level of a second year graduate student with particular emphasis placed on readability and completeness of argument. After reading this book, the reader will have the necessary background to study the current research on hyperbolic manifolds.

From reviews of the second edition:

Designed to be useful as both textbook and a reference, this book renders a real service to the mathematical community by putting together the tools and prerequisites needed to enter the territory of Thurston’s formidable theory of hyperbolic 3-manifolds [...] Every chapter is followed by historical notes, with attributions to the relevant literature, both of the originators of the idea present in the chapter and of modern presentation thereof. Victor V. Pambuccian, Zentralblatt MATH, Vol. 1106 (8), 2007

Egileari buruz

John G. Ratcliffe is Professor of Mathematics at Vanderbilt University. His research interests range from low-dimensional topology and hyperbolic manifolds to cosmology.

Baloratu liburu elektroniko hau

Eman iezaguzu iritzia.

Irakurtzeko informazioa

Telefono adimendunak eta tabletak
Instalatu Android eta iPad/iPhone gailuetarako Google Play Liburuak aplikazioa. Zure kontuarekin automatikoki sinkronizatzen da, eta konexioarekin nahiz gabe irakurri ahal izango dituzu liburuak, edonon zaudela ere.
Ordenagailu eramangarriak eta mahaigainekoak
Google Play-n erositako audio-liburuak entzuteko aukera ematen du ordenagailuko web-arakatzailearen bidez.
Irakurgailu elektronikoak eta bestelako gailuak
Tinta elektronikoa duten gailuetan (adibidez, Kobo-ko irakurgailu elektronikoak) liburuak irakurtzeko, fitxategi bat deskargatu beharko duzu, eta hura gailura transferitu. Jarraitu laguntza-zentroko argibide xehatuei fitxategiak irakurgailu elektroniko bateragarrietara transferitzeko.