Foundations of Deep Learning

· Springer Nature
ای-کتاب
292
صفحه‌ها
رده‌بندی‌ها و مرورها به‌تأیید نمی‌رسند.  بیشتر بدانید

درباره این ای-کتاب

Deep learning has significantly reshaped a variety of technologies, such as image processing, natural language processing, and audio processing. The excellent generalizability of deep learning is like a “cloud” to conventional complexity-based learning theory: the over-parameterization of deep learning makes almost all existing tools vacuous. This irreconciliation considerably undermines the confidence of deploying deep learning to security-critical areas, including autonomous vehicles and medical diagnosis, where small algorithmic mistakes can lead to fatal disasters. This book seeks to explaining the excellent generalizability, including generalization analysis via the size-independent complexity measures, the role of optimization in understanding the generalizability, and the relationship between generalizability and ethical/security issues.

The efforts to understand the excellent generalizability are following two major paths: (1) developing size-independent complexity measures, which can evaluate the “effective” hypothesis complexity that can be learned, instead of the whole hypothesis space; and (2) modelling the learned hypothesis through stochastic gradient methods, the dominant optimizers in deep learning, via stochastic differential functions and the geometry of the associated loss functions. Related works discover that over-parameterization surprisingly bring many good properties to the loss functions. Rising concerns of deep learning are seen on the ethical and security issues, including privacy preservation and adversarial robustness. Related works also reveal an interplay between them and generalizability: a good generalizability usually means a good privacy-preserving ability; and more robust algorithms might have a worse generalizability.

We expect readers can have a big picture of the current knowledge in deep learning theory, understand how the deep learning theory can guide new algorithm designing, and identify future research directions. Readers need knowledge of calculus, linear algebra, probability, statistics, and statistical learning theory.

درباره نویسنده


رده‌بندی این کتاب الکترونیک

نظرات خود را به ما بگویید.

اطلاعات مطالعه

تلفن هوشمند و رایانه لوحی
برنامه «کتاب‌های Google Play» را برای Android و iPad/iPhone بارگیری کنید. به‌طور خودکار با حسابتان همگام‌سازی می‌شود و به شما امکان می‌دهد هر کجا که هستید به‌صورت آنلاین یا آفلاین بخوانید.
رایانه کیفی و رایانه
با استفاده از مرورگر وب رایانه‌تان می‌توانید به کتاب‌های صوتی خریداری‌شده در Google Play گوش دهید.
eReaderها و دستگاه‌های دیگر
برای خواندن در دستگاه‌های جوهر الکترونیکی مانند کتاب‌خوان‌های الکترونیکی Kobo، باید فایل مدنظرتان را بارگیری و به دستگاه منتقل کنید. برای انتقال فایل به کتاب‌خوان‌های الکترونیکی پشتیبانی‌شده، دستورالعمل‌های کامل مرکز راهنمایی را دنبال کنید.