Forcing Idealized

ยท Cambridge Tracts in Mathematics แžŸแŸ€แžœแž—แŸ…แž‘แžธ 174 ยท Cambridge University Press
แžŸแŸ€แžœแž—แŸ…โ€‹แžขแŸแžกแžทแž…แžแŸ’แžšแžผแž“แžทแž…
7
แž‘แŸ†แž–แŸแžš
แž€แžถแžšแžœแžถแž™แžแž˜แŸ’แž›แŸƒ แž“แžทแž„แž˜แžแžทแžœแžถแž™แžแž˜แŸ’แž›แŸƒแž˜แžทแž“แžแŸ’แžšแžผแžœแž”แžถแž“แž•แŸ’แž‘แŸ€แž„แž•แŸ’แž‘แžถแžแŸ‹แž‘แŸ แžŸแŸ’แžœแŸ‚แž„แž™แž›แŸ‹แž”แž“แŸ’แžแŸ‚แž˜

แžขแŸ†แž–แžธแžŸแŸ€แžœแž—แŸ…โ€‹แžขแŸแžกแžทแž…แžแŸ’แžšแžผแž“แžทแž€แž“แŸแŸ‡

Descriptive set theory and definable proper forcing are two areas of set theory that developed quite independently of each other. This monograph unites them and explores the connections between them. Forcing is presented in terms of quotient algebras of various natural sigma-ideals on Polish spaces, and forcing properties in terms of Fubini-style properties or in terms of determined infinite games on Boolean algebras. Many examples of forcing notions appear, some newly isolated from measure theory, dynamical systems, and other fields. The descriptive set theoretic analysis of operations on forcings opens the door to applications of the theory: absoluteness theorems for certain classical forcing extensions, duality theorems, and preservation theorems for the countable support iteration. Containing original research, this text highlights the connections that forcing makes with other areas of mathematics, and is essential reading for academic researchers and graduate students in set theory, abstract analysis and measure theory.

แžœแžถแž™แžแž˜แŸ’แž›แŸƒแžŸแŸ€แžœแž—แŸ…โ€‹แžขแŸแžกแžทแž…แžแŸ’แžšแžผแž“แžทแž€แž“แŸแŸ‡

แž”แŸ’แžšแžถแž”แŸ‹แž™แžพแž„แžขแŸ†แž–แžธแž€แžถแžšแž™แž›แŸ‹แžƒแžพแž‰แžšแž”แžŸแŸ‹แžขแŸ’แž“แž€แŸ”

แžขแžถแž“โ€‹แž–แŸแžแŸŒแž˜แžถแž“

แž‘แžผแžšแžŸแž–แŸ’แž‘แž†แŸ’แž›แžถแžแžœแŸƒ แž“แžทแž„โ€‹แžแŸแž”แŸ’แž›แŸแž
แžŠแŸ†แžกแžพแž„แž€แž˜แŸ’แž˜แžœแžทแž’แžธ Google Play Books แžŸแž˜แŸ’แžšแžถแž”แŸ‹ Android แž“แžทแž„ iPad/iPhone แŸ” แžœแžถโ€‹แž’แŸ’แžœแžพแžŸแž˜แž€แžถแž›แž€แž˜แŸ’แž˜โ€‹แžŠแŸ„แž™แžŸแŸ’แžœแŸแž™แž”แŸ’แžšแžœแžแŸ’แžแžทแž‡แžถแž˜แžฝแž™โ€‹แž‚แžŽแž“แžธโ€‹แžšแž”แžŸแŸ‹แžขแŸ’แž“แž€โ€‹ แž“แžทแž„โ€‹แžขแž“แžปแž‰แŸ’แž‰แžถแžแžฑแŸ’แž™โ€‹แžขแŸ’แž“แž€แžขแžถแž“แž–แŸแž›โ€‹แž˜แžถแž“แžขแŸŠแžธแž“แž’แžบแžŽแžทแž แžฌแž‚แŸ’แž˜แžถแž“โ€‹แžขแŸŠแžธแž“แž’แžบแžŽแžทแžโ€‹แž“แŸ…แž‚แŸ’แžšแž”แŸ‹แž‘แžธแž€แž“แŸ’แž›แŸ‚แž„แŸ”
แž€แžปแŸ†แž–แŸ’แž™แžผแž‘แŸแžšโ€‹แž™แžฝแžšแžŠแŸƒ แž“แžทแž„แž€แžปแŸ†แž–แŸ’แž™แžผแž‘แŸแžš
แžขแŸ’แž“แž€แžขแžถแž…แžŸแŸ’แžŠแžถแž”แŸ‹แžŸแŸ€แžœแž—แŸ…แž‡แžถแžŸแŸ†แžกแŸแž„แžŠแŸ‚แž›แž”แžถแž“แž‘แžทแž‰แž“แŸ…แž€แŸ’แž“แžปแž„ Google Play แžŠแŸ„แž™แž”แŸ’แžšแžพแž€แž˜แŸ’แž˜แžœแžทแž’แžธแžšแžปแž€แžšแž€แžแžถแž˜แžขแŸŠแžธแž“แž’แžบแžŽแžทแžแž€แŸ’แž“แžปแž„แž€แžปแŸ†แž–แŸ’แž™แžผแž‘แŸแžšแžšแž”แžŸแŸ‹แžขแŸ’แž“แž€แŸ”
eReaders แž“แžทแž„โ€‹แžงแž”แž€แžšแžŽแŸโ€‹แž•แŸ’แžŸแŸแž„โ€‹แž‘แŸ€แž
แžŠแžพแž˜แŸ’แž”แžธแžขแžถแž“แž“แŸ…แž›แžพโ€‹แžงแž”แž€แžšแžŽแŸ e-ink แžŠแžผแž…แž‡แžถโ€‹แžงแž”แž€แžšแžŽแŸแžขแžถแž“โ€‹แžŸแŸ€แžœแž—แŸ…แžขแŸแžกแžทแž…แžแŸ’แžšแžผแž“แžทแž€ Kobo แžขแŸ’แž“แž€แž“แžนแž„แžแŸ’แžšแžผแžœโ€‹แž‘แžถแž‰แž™แž€โ€‹แžฏแž€แžŸแžถแžš แž แžพแž™โ€‹แž•แŸ’แž‘แŸแžšแžœแžถแž‘แŸ…โ€‹แžงแž”แž€แžšแžŽแŸโ€‹แžšแž”แžŸแŸ‹แžขแŸ’แž“แž€แŸ” แžŸแžผแž˜แžขแž“แžปแžœแžแŸ’แžแžแžถแž˜โ€‹แž€แžถแžšแžŽแŸ‚แž“แžถแŸ†แž›แž˜แŸ’แžขแžทแžแžšแž”แžŸแŸ‹แž˜แž‡แŸ’แžˆแž˜แžŽแŸ’แžŒแž›แž‡แŸ†แž“แžฝแž™ แžŠแžพแž˜แŸ’แž”แžธแž•แŸ’แž‘แŸแžšแžฏแž€แžŸแžถแžšโ€‹แž‘แŸ…แžงแž”แž€แžšแžŽแŸแžขแžถแž“แžŸแŸ€แžœแž—แŸ…โ€‹แžขแŸแžกแžทแž…แžแŸ’แžšแžผแž“แžทแž€แžŠแŸ‚แž›แžŸแŸ’แž‚แžถแž›แŸ‹แŸ”

แž”แž“แŸ’แžแžŸแŸŠแŸแžšแžธ

แž…แŸ’แžšแžพแž“แž‘แŸ€แžแžŠแŸ„แž™ Jindrich Zapletal

แžŸแŸ€แžœแž—แŸ…โ€‹แžขแŸแžกแžทแž…แžแŸ’แžšแžผแž“แžทแž€โ€‹แžŸแŸ’แžšแžŠแŸ€แž„แž‚แŸ’แž“แžถ