Flexible and Generalized Uncertainty Optimization: Theory and Approaches, Edition 2

·
· Springer Nature
電子書籍
193
ページ
評価とレビューは確認済みではありません 詳細

この電子書籍について

This book presents the theory and methods of flexible and generalized uncertainty optimization. Particularly, it describes the theory of generalized uncertainty in the context of optimization modeling. The book starts with an overview of flexible and generalized uncertainty optimization. It covers uncertainties that are both associated with lack of information and are more general than stochastic theory, where well-defined distributions are assumed. Starting from families of distributions that are enclosed by upper and lower functions, the book presents construction methods for obtaining flexible and generalized uncertainty input data that can be used in a flexible and generalized uncertainty optimization model. It then describes the development of the associated optimization model in detail. Written for graduate students and professionals in the broad field of optimization and operations research, this second edition has been revised and extended to include more worked examples and a section on interval multi-objective mini-max regret theory along with its solution method.

著者について

Weldon Alexander Lodwick is a Full Professor of Mathematics at the University of Colorado Denver. He holds a Ph.D. degree in mathematics (1980) from the Oregon State University. He is the co-editor of the book Fuzzy Optimization: Recent Developments and Applications, Studies in Fuzziness and Soft Computing Vol. 254, Springer-Verlag Berlin Heidelberg, 2010, and the author of the book Interval and Fuzzy Analysis: A Unified Approach in Advances in Imaging and Electronic Physics, Vol. 148, pp. 76–192, Elsevier, 2007. His current research interests include interval analysis, distance geometry, as well as flexible and generalized uncertainty optimization. Over the last thirty years he has taught applied mathematical modeling to undergraduate and graduate students, which covers topics such as radiation therapy of tumor, fuzzy and possibilistic optimization modeling, global optimization, optimal control, molecular distance geometry problems, and neural networks applied to control problems.
Luiz L. Salles-Neto received the M.Sc. degree in mathematics and the Ph.D. degree in computational and applied mathematics from the University of Campinas, Brazil, in 2000 and 2005, respectively. He was a Research Scholar at the Universidad de Sevilla, Spain, in 2009/2010, and a Research Scholar at the University of Colorado Denver, USA, in 2017. He is an Associate Professor at Federal University of São Paulo, Brazil.

この電子書籍を評価する

ご感想をお聞かせください。

読書情報

スマートフォンとタブレット
AndroidiPad / iPhone 用の Google Play ブックス アプリをインストールしてください。このアプリがアカウントと自動的に同期するため、どこでもオンラインやオフラインで読むことができます。
ノートパソコンとデスクトップ パソコン
Google Play で購入したオーディブックは、パソコンのウェブブラウザで再生できます。
電子書籍リーダーなどのデバイス
Kobo 電子書籍リーダーなどの E Ink デバイスで読むには、ファイルをダウンロードしてデバイスに転送する必要があります。サポートされている電子書籍リーダーにファイルを転送する方法について詳しくは、ヘルプセンターをご覧ください。