Finance with Monte Carlo

· Springer Science & Business Media
電子書
250
評分和評論未經驗證  瞭解詳情

關於本電子書

This text introduces upper division undergraduate/beginning graduate students in mathematics, finance, or economics, to the core topics of a beginning course in finance/financial engineering. Particular emphasis is placed on exploiting the power of the Monte Carlo method to illustrate and explore financial principles. Monte Carlo is the uniquely appropriate tool for modeling the random factors that drive financial markets and simulating their implications.

The Monte Carlo method is introduced early and it is used in conjunction with the geometric Brownian motion model (GBM) to illustrate and analyze the topics covered in the remainder of the text. Placing focus on Monte Carlo methods allows for students to travel a short road from theory to practical applications.

Coverage includes investment science, mean-variance portfolio theory, option pricing principles, exotic options, option trading strategies, jump diffusion and exponential Lévy alternative models, and the Kelly criterion for maximizing investment growth.

Novel features:

  • inclusion of both portfolio theory and contingent claim analysis in a single text
  • pricing methodology for exotic options
  • expectation analysis of option trading strategies
  • pricing models that transcend the Black–Scholes framework
  • optimizing investment allocations
  • concepts thoroughly explored through numerous simulation exercises
  • numerous worked examples and illustrations

The mathematical background required is a year and one-half course in calculus, matrix algebra covering solutions of linear systems, and a knowledge of probability including expectation, densities and the normal distribution. A refresher for these topics is presented in the Appendices. The programming background needed is how to code branching, loops and subroutines in some mathematical or general purpose language.

The mathematical background required is a year and one-half course in calculus, matrix algebra covering solutions of linear systems, and a knowledge of probability including expectation, densities and the normal distribution. A refresher for these topics is presented in the Appendices. The programming background needed is how to code branching, loops and subroutines in some mathematical or general purpose language.

Also by the author: (with F. Mendivil) Explorations in Monte Carlo, ©2009, ISBN: 978-0-387-87836-2; (with J. Herod) Mathematical Biology: An Introduction with Maple and Matlab, Second edition, ©2009, ISBN: 978-0-387-70983-3.

關於作者

Ronald W. Shonkwiler is a Professor Emeritus in the School of Mathematics at the Georgia Institute of Technology. He received his Masters in Mathematics in 1967, and then his PH.D. in Mathematics in 1970 from the University of Colorado, Boulder. His research includes optimization by Monte Carlo methods, computer geometry, fractal geometry, mathematical epidemiology, neural networks, and mathematical finance. Ronald W. Shonkwiler previously published two books with Springer in the UTM series. "Explorations in Monte Carlo Methods" 2009, ISBN: 978-0-387-87836-2 and "Mathematical Biology, 2nd ed" 2009, ISBN: 978-0-387-70983-3.

為這本電子書評分

歡迎提供意見。

閱讀資訊

智慧型手機與平板電腦
只要安裝 Google Play 圖書應用程式 Android 版iPad/iPhone 版,不僅應用程式內容會自動與你的帳戶保持同步,還能讓你隨時隨地上網或離線閱讀。
筆記型電腦和電腦
你可以使用電腦的網路瀏覽器聆聽你在 Google Play 購買的有聲書。
電子書閱讀器與其他裝置
如要在 Kobo 電子閱讀器這類電子書裝置上閱覽書籍,必須將檔案下載並傳輸到該裝置上。請按照說明中心的詳細操作說明,將檔案傳輸到支援的電子閱讀器上。