Finance with Monte Carlo

· Springer Science & Business Media
eBook
250
페이지
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

This text introduces upper division undergraduate/beginning graduate students in mathematics, finance, or economics, to the core topics of a beginning course in finance/financial engineering. Particular emphasis is placed on exploiting the power of the Monte Carlo method to illustrate and explore financial principles. Monte Carlo is the uniquely appropriate tool for modeling the random factors that drive financial markets and simulating their implications.

The Monte Carlo method is introduced early and it is used in conjunction with the geometric Brownian motion model (GBM) to illustrate and analyze the topics covered in the remainder of the text. Placing focus on Monte Carlo methods allows for students to travel a short road from theory to practical applications.

Coverage includes investment science, mean-variance portfolio theory, option pricing principles, exotic options, option trading strategies, jump diffusion and exponential Lévy alternative models, and the Kelly criterion for maximizing investment growth.

Novel features:

  • inclusion of both portfolio theory and contingent claim analysis in a single text
  • pricing methodology for exotic options
  • expectation analysis of option trading strategies
  • pricing models that transcend the Black–Scholes framework
  • optimizing investment allocations
  • concepts thoroughly explored through numerous simulation exercises
  • numerous worked examples and illustrations

The mathematical background required is a year and one-half course in calculus, matrix algebra covering solutions of linear systems, and a knowledge of probability including expectation, densities and the normal distribution. A refresher for these topics is presented in the Appendices. The programming background needed is how to code branching, loops and subroutines in some mathematical or general purpose language.

The mathematical background required is a year and one-half course in calculus, matrix algebra covering solutions of linear systems, and a knowledge of probability including expectation, densities and the normal distribution. A refresher for these topics is presented in the Appendices. The programming background needed is how to code branching, loops and subroutines in some mathematical or general purpose language.

Also by the author: (with F. Mendivil) Explorations in Monte Carlo, ©2009, ISBN: 978-0-387-87836-2; (with J. Herod) Mathematical Biology: An Introduction with Maple and Matlab, Second edition, ©2009, ISBN: 978-0-387-70983-3.

저자 정보

Ronald W. Shonkwiler is a Professor Emeritus in the School of Mathematics at the Georgia Institute of Technology. He received his Masters in Mathematics in 1967, and then his PH.D. in Mathematics in 1970 from the University of Colorado, Boulder. His research includes optimization by Monte Carlo methods, computer geometry, fractal geometry, mathematical epidemiology, neural networks, and mathematical finance. Ronald W. Shonkwiler previously published two books with Springer in the UTM series. "Explorations in Monte Carlo Methods" 2009, ISBN: 978-0-387-87836-2 and "Mathematical Biology, 2nd ed" 2009, ISBN: 978-0-387-70983-3.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.