Federated Learning Systems: Towards Privacy-Preserving Distributed AI

·
· Springer Nature
E-kirja
165
sivuja
Arvioita ja arvosteluja ei ole vahvistettu Lue lisää

Tietoa tästä e-kirjasta

This book dives deep into both industry implementations and cutting-edge research driving the Federated Learning (FL) landscape forward. FL enables decentralized model training, preserves data privacy, and enhances security without relying on centralized datasets. Industry pioneers like NVIDIA have spearheaded the development of general-purpose FL platforms, revolutionizing how companies harness distributed data. Alternately, for medical AI, FL platforms, such as FedBioMed, enable collaborative model development across healthcare institutions to unlock massive value.

Research advances in PETs highlight ongoing efforts to ensure that FL is robust, secure, and scalable. Looking ahead, federated learning could transform public health by enabling global collaboration on disease prevention while safeguarding individual privacy. From recommendation systems to cybersecurity applications, FL is poised to reshape multiple domains, driving a future where collaboration and privacy coexist seamlessly.

Arvioi tämä e-kirja

Kerro meille mielipiteesi.

Tietoa lukemisesta

Älypuhelimet ja tabletit
Asenna Google Play Kirjat ‑sovellus Androidille tai iPadille/iPhonelle. Se synkronoituu automaattisesti tilisi kanssa, jolloin voit lukea online- tai offline-tilassa missä tahansa oletkin.
Kannettavat ja pöytätietokoneet
Voit kuunnella Google Playsta ostettuja äänikirjoja tietokoneesi selaimella.
Lukulaitteet ja muut laitteet
Jos haluat lukea kirjoja sähköisellä lukulaitteella, esim. Kobo-lukulaitteella, sinun täytyy ladata tiedosto ja siirtää se laitteellesi. Siirrä tiedostoja tuettuihin lukulaitteisiin seuraamalla ohjekeskuksen ohjeita.