Existence of the Sectional Capacity

· ·
· American Mathematical Society: Memoirs of the American Mathematical Society 第 690 冊 · American Mathematical Soc.
電子書
130
評分和評論未經驗證  瞭解詳情

關於本電子書

Let $K$ be a global field, and let $X/K$ be an equidimensional, geometrically reduced projective variety. For an ample line bundle $\overline{\mathcal L}$ on $X$ with norms $\\ \_v$ on the spaces of sections $K_v \otimes_K \Gamma(X,\L^{\otimes n})$, we prove the existence of the sectional capacity $S_Gamma(\overline{\mathcal L})$, giving content to a theory proposed by Chinburg. In the language of Arakelov Theory, the quantity $-\log(S_Gamma(\overline{\mathcal L}))$ generalizes the top arithmetic self-intersection number of a metrized line bundle, and the existence of the sectional capacity is equivalent to an arithmetic Hilbert-Samuel Theorem for line bundles with singular metrics.In the case where the norms are induced by metrics on the fibres of ${\mathcal L}$, we establish the functoriality of the sectional capacity under base change, pullbacks by finite surjective morphisms, and products. We study the continuity of $S_Gamma(\overline{\mathcal L})$ under variation of the metric and line bundle, and we apply this to show that the notion of $v$-adic sets in $X(\mathbb C_v)$ of capacity $0$ is well-defined. Finally, we show that sectional capacities for arbitrary norms can be well-approximated using objects of finite type.

為這本電子書評分

歡迎提供意見。

閱讀資訊

智慧型手機與平板電腦
只要安裝 Google Play 圖書應用程式 Android 版iPad/iPhone 版,不僅應用程式內容會自動與你的帳戶保持同步,還能讓你隨時隨地上網或離線閱讀。
筆記型電腦和電腦
你可以使用電腦的網路瀏覽器聆聽你在 Google Play 購買的有聲書。
電子書閱讀器與其他裝置
如要在 Kobo 電子閱讀器這類電子書裝置上閱覽書籍,必須將檔案下載並傳輸到該裝置上。請按照說明中心的詳細操作說明,將檔案傳輸到支援的電子閱讀器上。