Existence of the Sectional Capacity

· ·
· American Mathematical Society: Memoirs of the American Mathematical Society Книга 690 · American Mathematical Soc.
Электронная книга
130
Количество страниц
Оценки и отзывы не проверены. Подробнее…

Об электронной книге

Let $K$ be a global field, and let $X/K$ be an equidimensional, geometrically reduced projective variety. For an ample line bundle $\overline{\mathcal L}$ on $X$ with norms $\\ \_v$ on the spaces of sections $K_v \otimes_K \Gamma(X,\L^{\otimes n})$, we prove the existence of the sectional capacity $S_Gamma(\overline{\mathcal L})$, giving content to a theory proposed by Chinburg. In the language of Arakelov Theory, the quantity $-\log(S_Gamma(\overline{\mathcal L}))$ generalizes the top arithmetic self-intersection number of a metrized line bundle, and the existence of the sectional capacity is equivalent to an arithmetic Hilbert-Samuel Theorem for line bundles with singular metrics.In the case where the norms are induced by metrics on the fibres of ${\mathcal L}$, we establish the functoriality of the sectional capacity under base change, pullbacks by finite surjective morphisms, and products. We study the continuity of $S_Gamma(\overline{\mathcal L})$ under variation of the metric and line bundle, and we apply this to show that the notion of $v$-adic sets in $X(\mathbb C_v)$ of capacity $0$ is well-defined. Finally, we show that sectional capacities for arbitrary norms can be well-approximated using objects of finite type.

Оцените электронную книгу

Поделитесь с нами своим мнением.

Где читать книги

Смартфоны и планшеты
Установите приложение Google Play Книги для Android или iPad/iPhone. Оно синхронизируется с вашим аккаунтом автоматически, и вы сможете читать любимые книги онлайн и офлайн где угодно.
Ноутбуки и настольные компьютеры
Слушайте аудиокниги из Google Play в веб-браузере на компьютере.
Устройства для чтения книг
Чтобы открыть книгу на таком устройстве для чтения, как Kobo, скачайте файл и добавьте его на устройство. Подробные инструкции можно найти в Справочном центре.