Existence of the Sectional Capacity

· ·
· American Mathematical Society: Memoirs of the American Mathematical Society Libro 690 · American Mathematical Soc.
Ebook
130
pagine
Valutazioni e recensioni non sono verificate  Scopri di più

Informazioni su questo ebook

Let $K$ be a global field, and let $X/K$ be an equidimensional, geometrically reduced projective variety. For an ample line bundle $\overline{\mathcal L}$ on $X$ with norms $\\ \_v$ on the spaces of sections $K_v \otimes_K \Gamma(X,\L^{\otimes n})$, we prove the existence of the sectional capacity $S_Gamma(\overline{\mathcal L})$, giving content to a theory proposed by Chinburg. In the language of Arakelov Theory, the quantity $-\log(S_Gamma(\overline{\mathcal L}))$ generalizes the top arithmetic self-intersection number of a metrized line bundle, and the existence of the sectional capacity is equivalent to an arithmetic Hilbert-Samuel Theorem for line bundles with singular metrics.In the case where the norms are induced by metrics on the fibres of ${\mathcal L}$, we establish the functoriality of the sectional capacity under base change, pullbacks by finite surjective morphisms, and products. We study the continuity of $S_Gamma(\overline{\mathcal L})$ under variation of the metric and line bundle, and we apply this to show that the notion of $v$-adic sets in $X(\mathbb C_v)$ of capacity $0$ is well-defined. Finally, we show that sectional capacities for arbitrary norms can be well-approximated using objects of finite type.

Valuta questo ebook

Dicci cosa ne pensi.

Informazioni sulla lettura

Smartphone e tablet
Installa l'app Google Play Libri per Android e iPad/iPhone. L'app verrà sincronizzata automaticamente con il tuo account e potrai leggere libri online oppure offline ovunque tu sia.
Laptop e computer
Puoi ascoltare gli audiolibri acquistati su Google Play usando il browser web del tuo computer.
eReader e altri dispositivi
Per leggere su dispositivi e-ink come Kobo e eReader, dovrai scaricare un file e trasferirlo sul dispositivo. Segui le istruzioni dettagliate del Centro assistenza per trasferire i file sugli eReader supportati.