Existence of the Sectional Capacity

· ·
· American Mathematical Society: Memoirs of the American Mathematical Society Knjiga 690 · American Mathematical Soc.
E-knjiga
130
str.
Ocjene i recenzije nisu potvrđene  Saznajte više

O ovoj e-knjizi

Let $K$ be a global field, and let $X/K$ be an equidimensional, geometrically reduced projective variety. For an ample line bundle $\overline{\mathcal L}$ on $X$ with norms $\\ \_v$ on the spaces of sections $K_v \otimes_K \Gamma(X,\L^{\otimes n})$, we prove the existence of the sectional capacity $S_Gamma(\overline{\mathcal L})$, giving content to a theory proposed by Chinburg. In the language of Arakelov Theory, the quantity $-\log(S_Gamma(\overline{\mathcal L}))$ generalizes the top arithmetic self-intersection number of a metrized line bundle, and the existence of the sectional capacity is equivalent to an arithmetic Hilbert-Samuel Theorem for line bundles with singular metrics.In the case where the norms are induced by metrics on the fibres of ${\mathcal L}$, we establish the functoriality of the sectional capacity under base change, pullbacks by finite surjective morphisms, and products. We study the continuity of $S_Gamma(\overline{\mathcal L})$ under variation of the metric and line bundle, and we apply this to show that the notion of $v$-adic sets in $X(\mathbb C_v)$ of capacity $0$ is well-defined. Finally, we show that sectional capacities for arbitrary norms can be well-approximated using objects of finite type.

Ocijenite ovu e-knjigu

Recite nam što mislite.

Informacije o čitanju

Pametni telefoni i tableti
Instalirajte aplikaciju Google Play knjige za Android i iPad/iPhone. Automatski se sinkronizira s vašim računom i omogućuje vam da čitate online ili offline gdje god bili.
Prijenosna i stolna računala
Audioknjige kupljene na Google Playu možete slušati pomoću web-preglednika na računalu.
Elektronički čitači i ostali uređaji
Za čitanje na uređajima s elektroničkom tintom, kao što su Kobo e-čitači, trebate preuzeti datoteku i prenijeti je na svoj uređaj. Slijedite detaljne upute u centru za pomoć za prijenos datoteka na podržane e-čitače.