When wastewater is treated, reducing organic material to carbon dioxide, water, and bacterial cells the cells are disposed of, producing a semisolid and nutrient-rich byproduct called sludge. The expansion in global population and industrial activity has turned the production of excess sludge into an international environmental challenge, with the ultimate disposal of excess sludge now one of the most expensive problems faced by wastewater facilities.
Written by two leading environmental engineers, Biological Sludge Minimization and Biomaterials/Bioenergy Recovery Technologies offers a comprehensive look at cutting-edge techniques for reducing sludge production, converting sludge into a value-added material, recovering useful resources from sludge, and sludge incineration. Reflecting the impact of new stringent environmental legislation, this book offers a frank appraisal of how sludge can be realistically managed, covering key concerns and the latest tools:
ETIENNE PAUL, PhD, is a professor in the Department of Chemical and Environmental Engineering at the National Institute of Applied Sciences. He has more than fifteen years of experience in the field of biological treatment of water, wastewater, and waste.
YU LIU, PhD, is an associate professor in the School of Civil and Environmental Engineering at Nanyang Technological University. He has authored or edited six books, four book chapters, and over ninety journal articles.