Entropic Invariants of Two-Phase Flows

· Elsevier
E-book
266
Pages
Éligible
Les notes et avis ne sont pas vérifiés. En savoir plus

À propos de cet e-book

In this book, a new approach to the theory and practice of two-phase systems based on a global invariant – entropy, – and other invariants is formulated and experimentally confirmed. - Offers a novel approach to the study of the two-phase flows systems based on statistical mechanics and probability theory - Provides the tools for computing and modelling two-phase systems, predicts mass transfer and enables system optimization - Provides a plethora of examples in among others, separation processes, dust production, pneumatic transport, and boiling bed

À propos de l'auteur

The author, Dr. Eugene Barsky, has been engaged in this subject for 18 years, since 1993. His M.Sc. thesis completed in 1998 was devoted to the development of models of cascade separation of solid materials in flows. His PhD thesis completed in 2001 was devoted to the development of entropy criterion of separation processes optimization. Among dozens of criteria applied, the entropy criterion has proved to be the most unbiased one. Since that time, the author has been developing these topics in depth. He created a number of industrial cascade apparatuses for powders separation and dust collection, wrote about 20 articles, published two books, participated in many scientific congresses and conferences. The material accumulated during 6 recent years is presented in the proposed book.

Donner une note à cet e-book

Dites-nous ce que vous en pensez.

Informations sur la lecture

Smartphones et tablettes
Installez l'application Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play à l'aide du navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour lire sur des appareils e-Ink, comme les liseuses Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du Centre d'aide pour transférer les fichiers sur les liseuses compatibles.