Elliptic Integrals and Elliptic Functions

· Moscow Lectures Cartea 9 · Springer Nature
Carte electronică
328
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe
Scădere de preț de 26 % pe 31 mar.

Despre această carte electronică

This book gives a comprehensive introduction to those parts of the theory of elliptic integrals and elliptic functions which provide illuminating examples in complex analysis, but which are not often covered in regular university courses. These examples form prototypes of major ideas in modern mathematics and were a driving force of the subject in the eighteenth and nineteenth centuries. In addition to giving an account of the main topics of the theory, the book also describes many applications, both in mathematics and in physics. For the reader’s convenience, all necessary preliminaries on basic notions such as Riemann surfaces are explained to a level sufficient to read the book.

For each notion a clear motivation is given for its study, answering the question ‘Why do we consider such objects?’, and the theory is developed in a natural way that mirrors its historical development (e.g., ‘If there is such and such an object, then you would surely expect this one’). This feature sets this text apart from other books on the same theme, which are usually presented in a different order. Throughout, the concepts are augmented and clarified by numerous illustrations.

Suitable for undergraduate and graduate students of mathematics, the book will also be of interest to researchers who are not familiar with elliptic functions and integrals, as well as math enthusiasts.


Despre autor

Takashi TAKEBE is a professor at the Faculty of Mathematics, National Research University Higher School of Economics, Moscow. He studies integrable systems in mathematical physics, especially integrable nonlinear differential equations, their connection with complex analysis and solvable lattice models in statistical mechanics related to elliptic R-matrices.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.