Elliptic Functions and Modular Forms

· Springer Nature
ebook
362
Σελίδες
Οι αξιολογήσεις και οι κριτικές δεν επαληθεύονται  Μάθετε περισσότερα

Σχετικά με το ebook

The theory of elliptic functions and modular forms is rich and storied, though it has a reputation for difficulty. In this textbook, the authors successfully bridge foundational concepts and advanced material. Following Weierstrass’s approach to elliptic functions, they also cover elliptic curves and complex multiplication. The sections on modular forms, which can be read independently, include discussions of Hecke operators and Dirichlet series. Special emphasis is placed on theta series, with some advanced results included. With detailed proofs and numerous exercises, this book is well-suited for self-study or use as a reference. A companion website provides videos and a discussion forum on the topic.

Σχετικά με τον συγγραφέα

Max Koecher (born 1924) studied mathematics and physics at the University of Göttingen. He initially worked on modular forms of several variables, leaving his mark with a well-known principle bearing his name. Later on, he concentrated on Jordan algebras and in particular their connections with bounded symmetric domains. In 1970, he was appointed to Hans Petersson's chair at the University of Münster. He retired in 1989 and passed away shortly thereafter.

Aloys Krieg (born 1955) studied mathematics at the University of Münster. He was the last PhD student of Max Koecher. He has mainly worked on modular forms of several variables. In 1993, he was appointed to Paul Butzer's chair at RWTH Aachen University, where he served as Vice President for Education for 16 years. He retired in 2024.

Αξιολογήστε αυτό το ebook

Πείτε μας τη γνώμη σας.

Πληροφορίες ανάγνωσης

Smartphone και tablet
Εγκαταστήστε την εφαρμογή Βιβλία Google Play για Android και iPad/iPhone. Συγχρονίζεται αυτόματα με τον λογαριασμό σας και σας επιτρέπει να διαβάζετε στο διαδίκτυο ή εκτός σύνδεσης, όπου κι αν βρίσκεστε.
Φορητοί και επιτραπέζιοι υπολογιστές
Μπορείτε να ακούσετε ηχητικά βιβλία τα οποία αγοράσατε στο Google Play, χρησιμοποιώντας το πρόγραμμα περιήγησης στον ιστό του υπολογιστή σας.
eReader και άλλες συσκευές
Για να διαβάσετε περιεχόμενο σε συσκευές e-ink, όπως είναι οι συσκευές Kobo eReader, θα χρειαστεί να κατεβάσετε ένα αρχείο και να το μεταφέρετε στη συσκευή σας. Ακολουθήστε τις αναλυτικές οδηγίες του Κέντρου βοήθειας για να μεταφέρετε αρχεία σε υποστηριζόμενα eReader.