Elements of Number Theory

· Springer Science & Business Media
3,0
1 отзив
Електронна книга
256
Страници
Оценките и отзивите не са потвърдени  Научете повече

Всичко за тази електронна книга

This book is intended to complement my Elements oi Algebra, and it is similarly motivated by the problem of solving polynomial equations. However, it is independent of the algebra book, and probably easier. In Elements oi Algebra we sought solution by radicals, and this led to the concepts of fields and groups and their fusion in the celebrated theory of Galois. In the present book we seek integer solutions, and this leads to the concepts of rings and ideals which merge in the equally celebrated theory of ideals due to Kummer and Dedekind. Solving equations in integers is the central problem of number theory, so this book is truly a number theory book, with most of the results found in standard number theory courses. However, numbers are best understood through their algebraic structure, and the necessary algebraic concepts rings and ideals-have no better motivation than number theory. The first nontrivial examples of rings appear in the number theory of Euler and Gauss. The concept of ideal-today as routine in ring the ory as the concept of normal subgroup is in group theory-also emerged from number theory, and in quite heroic fashion. Faced with failure of unique prime factorization in the arithmetic of certain generalized "inte gers" , Kummer created in the 1840s a new kind of number to overcome the difficulty. He called them "ideal numbers" because he did not know exactly what they were, though he knew how they behaved.

Оценки и отзиви

3,0
1 отзив

Оценете тази електронна книга

Кажете ни какво мислите.

Информация за четенето

Смартфони и таблети
Инсталирайте приложението Google Play Книги за Android и iPad/iPhone. То автоматично се синхронизира с профила ви и ви позволява да четете онлайн или офлайн, където и да сте.
Лаптопи и компютри
Можете да слушате закупените от Google Play аудиокниги посредством уеб браузъра на компютъра си.
Електронни четци и други устройства
За да четете на устройства с електронно мастило, като например електронните четци от Kobo, трябва да изтеглите файл и да го прехвърлите на устройството си. Изпълнете подробните инструкции в Помощния център, за да прехвърлите файловете в поддържаните електронни четци.