Elements of Abstract Algebra

· Courier Corporation
5.0
3 則評論
電子書
224
頁數
評分和評論未經驗證 瞭解詳情

關於這本電子書

This concise, readable, college-level text treats basic abstract algebra in remarkable depth and detail. An antidote to the usual surveys of structure, the book presents group theory, Galois theory, and classical ideal theory in a framework emphasizing proof of important theorems.
Chapter I (Set Theory) covers the basics of sets. Chapter II (Group Theory) is a rigorous introduction to groups. It contains all the results needed for Galois theory as well as the Sylow theorems, the Jordan-Holder theorem, and a complete treatment of the simplicity of alternating groups. Chapter III (Field Theory) reviews linear algebra and introduces fields as a prelude to Galois theory. In addition there is a full discussion of the constructibility of regular polygons. Chapter IV (Galois Theory) gives a thorough treatment of this classical topic, including a detailed presentation of the solvability of equations in radicals that actually includes solutions of equations of degree 3 and 4 ― a feature omitted from all texts of the last 40 years. Chapter V (Ring Theory) contains basic information about rings and unique factorization to set the stage for classical ideal theory. Chapter VI (Classical Ideal Theory) ends with an elementary proof of the Fundamental Theorem of Algebraic Number Theory for the special case of Galois extensions of the rational field, a result which brings together all the major themes of the book.
The writing is clear and careful throughout, and includes many historical notes. Mathematical proof is emphasized. The text comprises 198 articles ranging in length from a paragraph to a page or two, pitched at a level that encourages careful reading. Most articles are accompanied by exercises, varying in level from the simple to the difficult.

評分和評論

5.0
3 則評論

為這本電子書評分

請分享你的寶貴意見。

閱讀資訊

智能手機和平板電腦
請安裝 Android 版iPad/iPhone 版「Google Play 圖書」應用程式。這個應用程式會自動與你的帳戶保持同步,讓你隨時隨地上網或離線閱讀。
手提電腦和電腦
你可以使用電腦的網絡瀏覽器聆聽在 Google Play 上購買的有聲書。
電子書閱讀器及其他裝置
如要在 Kobo 等電子墨水裝置上閱覽書籍,你需要下載檔案並傳輸到你的裝置。請按照說明中心的詳細指示,將檔案傳輸到支援的電子書閱讀器。