Eigenvalues, Multiplicities and Graphs

·
· Cambridge Tracts in Mathematics 211. kniha · Cambridge University Press
E‑kniha
315
Počet strán
Hodnotenia a recenzie nie sú overené  Ďalšie informácie

Táto e‑kniha

The arrangement of nonzero entries of a matrix, described by the graph of the matrix, limits the possible geometric multiplicities of the eigenvalues, which are far more limited by this information than algebraic multiplicities or the numerical values of the eigenvalues. This book gives a unified development of how the graph of a symmetric matrix influences the possible multiplicities of its eigenvalues. While the theory is richest in cases where the graph is a tree, work on eigenvalues, multiplicities and graphs has provided the opportunity to identify which ideas have analogs for non-trees, and those for which trees are essential. It gathers and organizes the fundamental ideas to allow students and researchers to easily access and investigate the many interesting questions in the subject.

O autorovi

Charles R. Johnson is Class of 1961 Professor of Mathematics at the College of William and Mary, Virginia. He is the recognized expert in the interplay between linear algebra and combinatorics, as well as many parts of matrix analysis. He is coauthor of Matrix Analysis (Cambridge, 2012), Topics in Matrix Analysis (Cambridge, 2010), both with Roger Horn, and Totally Nonnegative Matrices (2011, with Shaun Fallat).

Carlos M. Saiago is Assistant Professor of Mathematics at Universidade Nova de Lisboa, Portugal, and is the author of fifteen papers on eigenvalues, multiplicities, and graphs.

Ohodnoťte túto elektronickú knihu

Povedzte nám svoj názor.

Informácie o dostupnosti

Smartfóny a tablety
Nainštalujte si aplikáciu Knihy Google Play pre AndroidiPad/iPhone. Automaticky sa synchronizuje s vaším účtom a umožňuje čítať online aj offline, nech už ste kdekoľvek.
Laptopy a počítače
Audioknihy zakúpené v službe Google Play môžete počúvať prostredníctvom webového prehliadača v počítači.
Čítačky elektronických kníh a ďalšie zariadenia
Ak chcete tento obsah čítať v zariadeniach využívajúcich elektronický atrament, ako sú čítačky e‑kníh Kobo, musíte stiahnuť príslušný súbor a preniesť ho do svojho zariadenia. Pri prenose súborov do podporovaných čítačiek e‑kníh postupujte podľa podrobných pokynov v centre pomoci.