Eigenvalues, Multiplicities and Graphs

·
· Cambridge Tracts in Mathematics Llibre 211 · Cambridge University Press
Llibre electrònic
315
Pàgines
No es verifiquen les puntuacions ni les ressenyes Més informació

Sobre aquest llibre

The arrangement of nonzero entries of a matrix, described by the graph of the matrix, limits the possible geometric multiplicities of the eigenvalues, which are far more limited by this information than algebraic multiplicities or the numerical values of the eigenvalues. This book gives a unified development of how the graph of a symmetric matrix influences the possible multiplicities of its eigenvalues. While the theory is richest in cases where the graph is a tree, work on eigenvalues, multiplicities and graphs has provided the opportunity to identify which ideas have analogs for non-trees, and those for which trees are essential. It gathers and organizes the fundamental ideas to allow students and researchers to easily access and investigate the many interesting questions in the subject.

Sobre l'autor

Charles R. Johnson is Class of 1961 Professor of Mathematics at the College of William and Mary, Virginia. He is the recognized expert in the interplay between linear algebra and combinatorics, as well as many parts of matrix analysis. He is coauthor of Matrix Analysis (Cambridge, 2012), Topics in Matrix Analysis (Cambridge, 2010), both with Roger Horn, and Totally Nonnegative Matrices (2011, with Shaun Fallat).

Carlos M. Saiago is Assistant Professor of Mathematics at Universidade Nova de Lisboa, Portugal, and is the author of fifteen papers on eigenvalues, multiplicities, and graphs.

Puntua aquest llibre electrònic

Dona'ns la teva opinió.

Informació de lectura

Telèfons intel·ligents i tauletes
Instal·la l'aplicació Google Play Llibres per a Android i per a iPad i iPhone. Aquesta aplicació se sincronitza automàticament amb el compte i et permet llegir llibres en línia o sense connexió a qualsevol lloc.
Ordinadors portàtils i ordinadors de taula
Pots escoltar els audiollibres que has comprat a Google Play amb el navegador web de l'ordinador.
Lectors de llibres electrònics i altres dispositius
Per llegir en dispositius de tinta electrònica, com ara lectors de llibres electrònics Kobo, hauràs de baixar un fitxer i transferir-lo al dispositiu. Segueix les instruccions detallades del Centre d'ajuda per transferir els fitxers a lectors de llibres electrònics compatibles.