Eigenvalue analysis and convergence acceleration techniques for summation-by-parts approximations

· LinkÃķping Studies in Science and Technology. Dissertations āŠŠāŦāŠļāŦāŠĪāŠ• 1 · LinkÃķping University Electronic Press
3.0
1 āŠ°āŠŋāŠĩāŦāŠŊāŦ‚
āŠ‡-āŠŠāŦāŠļāŦāŠĪāŠ•
38
āŠŠāŦ‡āМ
āŠ°āŦ‡āПāŠŋāŠ‚āŠ— āŠ…āŠĻāŦ‡ āŠ°āŠŋāŠĩāŦāŠŊāŦ‚ āŠšāŠ•āŠūāŠļāŦ‡āŠēāŠū āŠĻāŠĨāŦ€Â āŠĩāŠ§āŦ āŠœāŠūāŠĢāŦ‹

āŠ† āŠ‡-āŠŠāŦāŠļāŦāŠĪāŠ• āŠĩāŠŋāŠķāŦ‡

Many physical phenomena can be described mathematically by means of partial differential equations. These mathematical formulations are said to be well-posed if a unique solution, bounded by the given data, exists. The boundedness of the solution can be established through the so-called energy-method, which leads to an estimate of the solution by means of integration-by-parts. Numerical approximations mimicking integration-by-parts discretely are said to fulfill the Summation-By-Parts (SBP) property. These formulations naturally yield bounded approximate solutions if the boundary conditions are weakly imposed through Simultaneous-Approximation-Terms (SAT). Discrete problems with bounded solutions are said to be energy-stable.

Energy-stable and high-order accurate SBP-SAT discretizations for well-posed linear problems were first introduced for centered finite-difference methods. These mathematical formulations, based on boundary conforming grids, allow for an exact mimicking of integration-by-parts. However, other discretizations techniques that do not include one or both boundary nodes, such as pseudo-spectral collocation methods, only fulfill a generalized SBP (GSBP) property but still lead to energy-stable solutions.

This thesis consists of two main topics. The first part, which is mostly devoted to theoretical investigations, treats discretizations based on SBP and GSBP operators. A numerical approximation of a conservation law is said to be conservative if the approximate solution mimics the physical conservation property. It is shown that conservative and energy-stable spatial discretizations of variable coefficient problems require an exact numerical mimicking of integration-by-parts. We also discuss the invertibility of the algebraic problems arising from (G)SBP-SAT discretizations in time of energy-stable spatial approximations. We prove that pseudo-spectral collocation methods for the time derivative lead to invertible fully-discrete problems. The same result is proved for second-, fourth- and sixth-order accurate finite-difference based time integration methods.

Once the invertibility of (G)SBP-SAT discrete formulations is established, we are interested in efficient algorithms for the unique solution of such problems. To this end, the second part of the thesis has a stronger experimental flavour and deals with convergence acceleration techniques for SBP-SAT approximations. First, we consider a modified Dual Time-Stepping (DTS) technique which makes use of two derivatives in pseudo-time. The new DTS formulation, compared to the classical one, accelerates the convergence to steady-state and reduces the stiffness of the problem. Next, we investigate multi-grid methods. For parabolic problems, highly oscillating error modes are optimally damped by iterative methods, while smooth residuals are transferred to coarser grids. In this case, we show that the Galerkin condition in combination with the SBP-preserving interpolation operators leads to fast convergence. For hyperbolic problems, low frequency error modes are rapidly expelled by grid coarsening, since coarser grids have milder stability restrictions on time steps. For such problems, Total Variation Dimishing Multi-Grid (TVD-MG) allows for faster wave propagation of first order upwind discretizations. In this thesis, we extend low order TVD-MG schemes to high-order SBP-SAT upwind discretizations.

āŠ°āŦ‡āПāŠŋāŠ‚āŠ— āŠ…āŠĻāŦ‡ āŠ°āŠŋāŠĩāŦāŠŊāŦ‚

3.0
1 āŠ°āŠŋāŠĩāŦāŠŊāŦ‚

āŠ† āŠ‡-āŠŠāŦāŠļāŦāŠĪāŠ•āŠĻāŦ‡ āŠ°āŦ‡āПāŠŋāŠ‚āŠ— āŠ†āŠŠāŦ‹

āŠĪāŠŪāŦ‡ āŠķāŦāŠ‚ āŠĩāŠŋāŠšāŠūāŠ°āŦ‹ āŠ›āŦ‹ āŠ…āŠŪāŠĻāŦ‡ āŠœāŠĢāŠūāŠĩāŦ‹.

āŠŪāŠūāŠđāŠŋāŠĪāŦ€ āŠĩāŠūāŠ‚āŠšāŠĩāŦ€

āŠļāŦāŠŪāŠūāŠ°āŦāПāŠŦāŦ‹āŠĻ āŠ…āŠĻāŦ‡ āŠŸāŦ…āŠŽāŦāŠēāŦ‡āП
Android āŠ…āŠĻāŦ‡ iPad/iPhone āŠŪāŠūāŠŸāŦ‡ Google Play Books āŠāŠŠ āŠ‡āŠĻāŦāŠļāŦāПāŦ‰āŠē āŠ•āŠ°āŦ‹. āŠĪāŦ‡ āŠĪāŠŪāŠūāŠ°āŠū āŠāŠ•āŠūāŠ‰āŠĻāŦāП āŠļāŠūāŠĨāŦ‡ āŠ‘āŠŸāŦ‹āŠŪāŦ…āПāŠŋāŠ• āŠ°āŦ€āŠĪāŦ‡ āŠļāŠŋāŠ‚āŠ• āŠĨāŠūāŠŊ āŠ›āŦ‡ āŠ…āŠĻāŦ‡ āŠĪāŠŪāŠĻāŦ‡ āŠœāŦāŠŊāŠūāŠ‚ āŠŠāŠĢ āŠđāŦ‹ āŠĪāŦāŠŊāŠūāŠ‚ āŠĪāŠŪāŠĻāŦ‡ āŠ‘āŠĻāŠēāŠūāŠ‡āŠĻ āŠ…āŠĨāŠĩāŠū āŠ‘āŠŦāŠēāŠūāŠ‡āŠĻ āŠĩāŠūāŠ‚āŠšāŠĩāŠūāŠĻāŦ€ āŠŪāŠ‚āŠœāŦ‚āаāŦ€ āŠ†āŠŠāŦ‡ āŠ›āŦ‡.
āŠēāŦ…āŠŠāŠŸāŦ‰āŠŠ āŠ…āŠĻāŦ‡ āŠ•āŠŪāŦāŠŠāŦāŠŊāŦāŠŸāŠ°
Google Play āŠŠāŠ° āŠ–āŠ°āŦ€āŠĶāŦ‡āŠē āŠ‘āŠĄāŠŋāŠ“āŠŽāŦāŠ•āŠĻāŦ‡ āŠĪāŠŪāŦ‡ āŠĪāŠŪāŠūāŠ°āŠū āŠ•āŠŪāŦāŠŠāŦāŠŊāŦāŠŸāŠ°āŠĻāŠū āŠĩāŦ‡āŠŽ āŠŽāŦāаāŠūāŠ‰āŠāŠ°āŠĻāŦ‹ āŠ‰āŠŠāŠŊāŦ‹āŠ— āŠ•āŠ°āŦ€āŠĻāŦ‡ āŠļāŠūāŠ‚āŠ­āŠģāŦ€ āŠķāŠ•āŦ‹ āŠ›āŦ‹.
eReaders āŠ…āŠĻāŦ‡ āŠ…āŠĻāŦāŠŊ āŠĄāŠŋāŠĩāŠūāŠ‡āŠļ
Kobo āŠ‡-āŠ°āŦ€āŠĄāŠ° āŠœāŦ‡āŠĩāŠū āŠ‡-āŠ‡āŠ‚āŠ• āŠĄāŠŋāŠĩāŠūāŠ‡āŠļ āŠŠāŠ° āŠĩāŠūāŠ‚āŠšāŠĩāŠū āŠŪāŠūāŠŸāŦ‡, āŠĪāŠŪāŠūāŠ°āŦ‡ āŠŦāŠūāŠ‡āŠēāŠĻāŦ‡ āŠĄāŠūāŠ‰āŠĻāŠēāŦ‹āŠĄ āŠ•āŠ°āŦ€āŠĻāŦ‡ āŠĪāŠŪāŠūāŠ°āŠū āŠĄāŠŋāŠĩāŠūāŠ‡āŠļ āŠŠāŠ° āŠŸāŦāаāŠūāŠĻāŦāŠļāŠŦāŠ° āŠ•āŠ°āŠĩāŠūāŠĻāŦ€ āŠœāŠ°āŦ‚āа āŠŠāŠĄāŠķāŦ‡. āŠļāŠŠāŦ‹āаāŦāПāŦ‡āŠĄ āŠ‡-āŠ°āŦ€āŠĄāŠ° āŠŠāŠ° āŠŦāŠūāŠ‡āŠēāŦ‹ āŠŸāŦāаāŠūāŠĻāŦāŠļāŦāŠŦāŠ° āŠ•āŠ°āŠĩāŠū āŠŪāŠūāŠŸāŦ‡ āŠļāŠđāŠūāŠŊāŠĪāŠū āŠ•āŦ‡āŠĻāŦāŠĶāŦāаāŠĻāŦ€ āŠĩāŠŋāŠ—āŠĪāŠĩāŠūāŠ° āŠļāŦ‚āКāŠĻāŠūāŠ“ āŠ…āŠĻāŦāŠļāŠ°āŦ‹.