Eigenvalue Problem and Nonlinear Programming Problem: For Economic Studies

· New Frontiers in Regional Science: Asian Perspectives Livro 70 · Springer Nature
E-book
196
Páginas
As notas e avaliações não são verificadas Saiba mais

Sobre este e-book

This book focuses on the Frobenius theorem regarding a nonlinear simultaneous system. The Frobenius theorem is well known as a condition for a linear simultaneous system’s having a nonnegative solution. Generally, however, the condition of a simultaneous system, including a non-linear system’s having a nonnegative solution, is hardly discussed at all. This book, therefore, extends the conventional Frobenius theorem for nonlinear simultaneous systems for economic analysis.

Almost all static optimization problems in economics involve nonlinear programing. Theoretical models in economics are described in the form of a simultaneous system resulting from the rational optimization behavior of households and enterprises. On the other hand, rational optimization behavior of households and enterprises is, mathematically speaking, expressed as nonlinear programing. For this reason it is important to understand the meaning of nonlinear programing. Because this book includes explanations of the relations among various restrictions in a nonlinear programing systematically and clearly, this book is suitable for students in graduate school programs in economics.

Sobre o autor

Keiko Nakayama, Professor, Chukyo University, Nagoya, Japan

Keiko Nakayama, 2022, A Forest Environmental Tax Scheme in Japan: Toward Water Source Cultivation-, Springer

Keiko Nakayama and Yuzuru Miyata (Editors), 2019, Theoretical and Empirical Analysis in Environmental Economics, Springer (Chapter 1 and Chapter 4)


Avaliar este e-book

Diga o que você achou

Informações de leitura

Smartphones e tablets
Instale o app Google Play Livros para Android e iPad/iPhone. Ele sincroniza automaticamente com sua conta e permite ler on-line ou off-line, o que você preferir.
Laptops e computadores
Você pode ouvir audiolivros comprados no Google Play usando o navegador da Web do seu computador.
eReaders e outros dispositivos
Para ler em dispositivos de e-ink como os e-readers Kobo, é necessário fazer o download e transferir um arquivo para o aparelho. Siga as instruções detalhadas da Central de Ajuda se quiser transferir arquivos para os e-readers compatíveis.