Eigenface: Exploring the Depths of Visual Recognition with Eigenface

· Computer Vision 第 67 冊 · One Billion Knowledgeable
電子書
196
頁數
符合資格
評分和評論未經驗證 瞭解詳情

關於這本電子書

What is Eigenface

An eigenface is the name given to a set of eigenvectors when used in the computer vision problem of human face recognition. The approach of using eigenfaces for recognition was developed by Sirovich and Kirby and used by Matthew Turk and Alex Pentland in face classification. The eigenvectors are derived from the covariance matrix of the probability distribution over the high-dimensional vector space of face images. The eigenfaces themselves form a basis set of all images used to construct the covariance matrix. This produces dimension reduction by allowing the smaller set of basis images to represent the original training images. Classification can be achieved by comparing how faces are represented by the basis set.


How you will benefit


(I) Insights, and validations about the following topics:


Chapter 1: Eigenface


Chapter 2: Principal component analysis


Chapter 3: Singular value decomposition


Chapter 4: Eigenvalues and eigenvectors


Chapter 5: Eigendecomposition of a matrix


Chapter 6: Kernel principal component analysis


Chapter 7: Matrix analysis


Chapter 8: Linear dynamical system


Chapter 9: Multivariate normal distribution


Chapter 10: Modes of variation


(II) Answering the public top questions about eigenface.


(III) Real world examples for the usage of eigenface in many fields.


Who this book is for


Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of Eigenface.

為這本電子書評分

請分享你的寶貴意見。

閱讀資訊

智能手機和平板電腦
請安裝 Android 版iPad/iPhone 版「Google Play 圖書」應用程式。這個應用程式會自動與你的帳戶保持同步,讓你隨時隨地上網或離線閱讀。
手提電腦和電腦
你可以使用電腦的網絡瀏覽器聆聽在 Google Play 上購買的有聲書。
電子書閱讀器及其他裝置
如要在 Kobo 等電子墨水裝置上閱覽書籍,你需要下載檔案並傳輸到你的裝置。請按照說明中心的詳細指示,將檔案傳輸到支援的電子書閱讀器。

繼續閱讀此系列

更多Fouad Sabry的著作

同類型電子書