Eigenface

· Computer Vision 第 67 本图书 · One Billion Knowledgeable
电子书
196
符合条件
评分和评价未经验证  了解详情

关于此电子书

What is Eigenface

An eigenface is the name given to a set of eigenvectors when used in the computer vision problem of human face recognition. The approach of using eigenfaces for recognition was developed by Sirovich and Kirby and used by Matthew Turk and Alex Pentland in face classification. The eigenvectors are derived from the covariance matrix of the probability distribution over the high-dimensional vector space of face images. The eigenfaces themselves form a basis set of all images used to construct the covariance matrix. This produces dimension reduction by allowing the smaller set of basis images to represent the original training images. Classification can be achieved by comparing how faces are represented by the basis set.


How you will benefit


(I) Insights, and validations about the following topics:


Chapter 1: Eigenface


Chapter 2: Principal component analysis


Chapter 3: Singular value decomposition


Chapter 4: Eigenvalues and eigenvectors


Chapter 5: Eigendecomposition of a matrix


Chapter 6: Kernel principal component analysis


Chapter 7: Matrix analysis


Chapter 8: Linear dynamical system


Chapter 9: Multivariate normal distribution


Chapter 10: Modes of variation


(II) Answering the public top questions about eigenface.


(III) Real world examples for the usage of eigenface in many fields.


Who this book is for


Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of Eigenface.

为此电子书评分

欢迎向我们提供反馈意见。

如何阅读

智能手机和平板电脑
只要安装 AndroidiPad/iPhone 版的 Google Play 图书应用,不仅应用内容会自动与您的账号同步,还能让您随时随地在线或离线阅览图书。
笔记本电脑和台式机
您可以使用计算机的网络浏览器聆听您在 Google Play 购买的有声读物。
电子阅读器和其他设备
如果要在 Kobo 电子阅读器等电子墨水屏设备上阅读,您需要下载一个文件,并将其传输到相应设备上。若要将文件传输到受支持的电子阅读器上,请按帮助中心内的详细说明操作。