Eigenface

· Computer Vision Bók 67 · One Billion Knowledgeable
Rafbók
196
Síður
Gjaldgeng
Einkunnir og umsagnir eru ekki staðfestar  Nánar

Um þessa rafbók

What is Eigenface

An eigenface is the name given to a set of eigenvectors when used in the computer vision problem of human face recognition. The approach of using eigenfaces for recognition was developed by Sirovich and Kirby and used by Matthew Turk and Alex Pentland in face classification. The eigenvectors are derived from the covariance matrix of the probability distribution over the high-dimensional vector space of face images. The eigenfaces themselves form a basis set of all images used to construct the covariance matrix. This produces dimension reduction by allowing the smaller set of basis images to represent the original training images. Classification can be achieved by comparing how faces are represented by the basis set.


How you will benefit


(I) Insights, and validations about the following topics:


Chapter 1: Eigenface


Chapter 2: Principal component analysis


Chapter 3: Singular value decomposition


Chapter 4: Eigenvalues and eigenvectors


Chapter 5: Eigendecomposition of a matrix


Chapter 6: Kernel principal component analysis


Chapter 7: Matrix analysis


Chapter 8: Linear dynamical system


Chapter 9: Multivariate normal distribution


Chapter 10: Modes of variation


(II) Answering the public top questions about eigenface.


(III) Real world examples for the usage of eigenface in many fields.


Who this book is for


Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of Eigenface.

Gefa þessari rafbók einkunn.

Segðu okkur hvað þér finnst.

Upplýsingar um lestur

Snjallsímar og spjaldtölvur
Settu upp forritið Google Play Books fyrir Android og iPad/iPhone. Það samstillist sjálfkrafa við reikninginn þinn og gerir þér kleift að lesa með eða án nettengingar hvar sem þú ert.
Fartölvur og tölvur
Hægt er að hlusta á hljóðbækur sem keyptar eru í Google Play í vafranum í tölvunni.
Lesbretti og önnur tæki
Til að lesa af lesbrettum eins og Kobo-lesbrettum þarftu að hlaða niður skrá og flytja hana yfir í tækið þitt. Fylgdu nákvæmum leiðbeiningum hjálparmiðstöðvar til að flytja skrár yfir í studd lesbretti.