ELEMENTS OF DISCRETE MATHEMATICS

· · ·
Ram Prasad Publications(R.P.H.)
E-Book
220
Seiten
Bewertungen und Rezensionen werden nicht geprüft  Weitere Informationen

Über dieses E-Book

Unit-I

1.1 Indian Logic

1.1.1 Origins, 1.1.2 The schools Vaisheshika, 1.1.3 Catuskoti, 1.1.4 Nyaya, 1.1.5 Jain logic, 1.1.6 Buddhist logic, 1.1.7 Navya-Nyaya, 1.1.8 Influence of Indian logic on modern logic, 1.1.9 Boolean Logic and Indian Thoughts.

1.2 Relations

1.2.1 Binary, Inverse, Composite and Equivalence relation, 1.2.2 Equivalence classes and its properties, 1.2.3 Partition of a set, 1.2.4 Partial order relation, 1.2.5 Partially ordered and Totally ordered sets, 1.2.6 Hasse diagram.

1.3 Lattices

1.3.1 Definition and examples, 1.3.2 Dual, bounded, distributive and complemented lattices.

Unit-II

2.1 Boolean Algebra

2.1.1 Definition and properties, 2.1.2 Switching circuits and its applications, 2.1.3 Logic gates and circuits. 2.2 Boolean functions

2.2.1 Disjunctive and conjunctive normal forms, 2.2.2 Bool's expansion theorem, 2.3 Minimize the Boolean function using Karnaugh Map.

Unit-III

Graphs :

3.1 Definition and types of graphs, 3.2 Subgraphs, 3.3 Walk, path and circuit, 3.4 Connected and disconnected graphs, 3.5 Euler graph, 3.6 Hamiltonian path and circuit, 3.7 Dijkstra's Algorithm for shortest paths in weighted graph.

Unit-IV

Tree :

4.1 Trees and its properties, 4.2 Rooted, Binary and Spanning tree, 4.3 Rank and nullity of a graph, 4.4 Kruskal's and Prim's Algorithm, 4.5 Cut-set and its properties, 

Dieses E-Book bewerten

Deine Meinung ist gefragt!

Informationen zum Lesen

Smartphones und Tablets
Nachdem du die Google Play Bücher App für Android und iPad/iPhone installiert hast, wird diese automatisch mit deinem Konto synchronisiert, sodass du auch unterwegs online und offline lesen kannst.
Laptops und Computer
Im Webbrowser auf deinem Computer kannst du dir Hörbucher anhören, die du bei Google Play gekauft hast.
E-Reader und andere Geräte
Wenn du Bücher auf E-Ink-Geräten lesen möchtest, beispielsweise auf einem Kobo eReader, lade eine Datei herunter und übertrage sie auf dein Gerät. Eine ausführliche Anleitung zum Übertragen der Dateien auf unterstützte E-Reader findest du in der Hilfe.