Discrete Mathematics

American Mathematical Soc.
4,5
4 avis
E-book
388
Pages
Les notes et avis ne sont pas vérifiés. En savoir plus

À propos de cet e-book

The advent of fast computers and the search for efficient algorithms revolutionized combinatorics and brought about the field of discrete mathematics. This book is an introduction to the main ideas and results of discrete mathematics, and with its emphasis on algorithms it should be interesting to mathematicians and computer scientists alike. The book is organized into three parts: enumeration, graphs and algorithms, and algebraic systems. There are 600 exercises with hints andsolutions to about half of them. The only prerequisites for understanding everything in the book are linear algebra and calculus at the undergraduate level. Praise for the German edition ... This book is a well-written introduction to discrete mathematics and is highly recommended to every student ofmathematics and computer science as well as to teachers of these topics. --Konrad Engel for MathSciNet Martin Aigner is a professor of mathematics at the Free University of Berlin. He received his PhD at the University of Vienna and has held a number of positions in the USA and Germany before moving to Berlin. He is the author of several books on discrete mathematics, graph theory, and the theory of search. The Monthly article Turan's graph theorem earned him a 1995 Lester R. Ford Prize of theMAA for expository writing, and his book Proofs from the BOOK with Gunter M. Ziegler has been an international success with translations into 12 languages.

Notes et avis

4,5
4 avis

Donner une note à cet e-book

Dites-nous ce que vous en pensez.

Informations sur la lecture

Smartphones et tablettes
Installez l'application Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play à l'aide du navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour lire sur des appareils e-Ink, comme les liseuses Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du Centre d'aide pour transférer les fichiers sur les liseuses compatibles.