Differential Manifolds

· Pure and Applied Mathematics Bok 138 · Academic Press
E-bok
248
Sider
Kvalifisert
Vurderinger og anmeldelser blir ikke kontrollert  Finn ut mer

Om denne e-boken

Differential Manifolds is a modern graduate-level introduction to the important field of differential topology. The concepts of differential topology lie at the heart of many mathematical disciplines such as differential geometry and the theory of lie groups. The book introduces both the h-cobordism theorem and the classification of differential structures on spheres. The presentation of a number of topics in a clear and simple fashion make this book an outstanding choice for a graduate course in differential topology as well as for individual study. - Presents the study and classification of smooth structures on manifolds - It begins with the elements of theory and concludes with an introduction to the method of surgery - Chapters 1-5 contain a detailed presentation of the foundations of differential topology--no knowledge of algebraic topology is required for this self-contained section - Chapters 6-8 begin by explaining the joining of manifolds along submanifolds, and ends with the proof of the h-cobordism theory - Chapter 9 presents the Pontriagrin construction, the principle link between differential topology and homotopy theory; The final chapter introduces the method of surgery and applies it to the classification of smooth structures on spheres

Vurder denne e-boken

Fortell oss hva du mener.

Hvordan lese innhold

Smarttelefoner og nettbrett
Installer Google Play Bøker-appen for Android og iPad/iPhone. Den synkroniseres automatisk med kontoen din og lar deg lese både med og uten nett – uansett hvor du er.
Datamaskiner
Du kan lytte til lydbøker du har kjøpt på Google Play, i nettleseren på datamaskinen din.
Lesebrett og andre enheter
For å lese på lesebrett som Kobo eReader må du laste ned en fil og overføre den til enheten din. Følg den detaljerte veiledningen i brukerstøtten for å overføre filene til støttede lesebrett.