Differential Geometry of Manifolds: Edition 2

· CRC Press
Электрондук китеп
367
Барактар
Кошсо болот
Рейтинг жана сын-пикирлер текшерилген жок  Кеңири маалымат

Учкай маалымат

Differential Geometry of Manifolds, Second Edition presents the extension of differential geometry from curves and surfaces to manifolds in general. The book provides a broad introduction to the field of differentiable and Riemannian manifolds, tying together classical and modern formulations. It introduces manifolds in a both streamlined and mathematically rigorous way while keeping a view toward applications, particularly in physics.

The author takes a practical approach, containing extensive exercises and focusing on applications, including the Hamiltonian formulations of mechanics, electromagnetism, string theory.

The Second Edition of this successful textbook offers several notable points of revision.

New to the Second Edition:

  • New problems have been added and the level of challenge has been changed to the exercises
  • Each section corresponds to a 60-minute lecture period, making it more user-friendly for lecturers
  • Includes new sections which provide more comprehensive coverage of topics
  • Features a new chapter on Multilinear Algebra

Автор жөнүндө

Stephen Lovett is a Professor of Mathematics at Wheaton College in Illinois. He has also taught at Eastern Nazerene College. He holds a PhD from Northeastern University. He also authored three well-received texts with CRC Press, including the companion volume, Differential Geometry of Curves and Surfaces, Second Edition, with Tom Banchoff and Abstract Algebra: Structures and Applications.

Бул электрондук китепти баалаңыз

Оюңуз менен бөлүшүп коюңуз.

Окуу маалыматы

Смартфондор жана планшеттер
Android жана iPad/iPhone үчүн Google Play Китептер колдонмосун орнотуңуз. Ал автоматтык түрдө аккаунтуңуз менен шайкештелип, кайда болбоңуз, онлайнда же оффлайнда окуу мүмкүнчүлүгүн берет.
Ноутбуктар жана компьютерлер
Google Play'ден сатылып алынган аудиокитептерди компьютериңиздин веб браузеринен уга аласыз.
eReaders жана башка түзмөктөр
Kobo eReaders сыяктуу электрондук сыя түзмөктөрүнөн окуу үчүн, файлды жүктөп алып, аны түзмөгүңүзгө өткөрүшүңүз керек. Файлдарды колдоого алынган eReaders'ке өткөрүү үчүн Жардам борборунун нускамаларын аткарыңыз.