Differential Geometry of Manifolds: Edition 2

· CRC Press
E-boek
367
Bladsye
Geskik
Graderings en resensies word nie geverifieer nie. Kom meer te wete

Meer oor hierdie e-boek

Differential Geometry of Manifolds, Second Edition presents the extension of differential geometry from curves and surfaces to manifolds in general. The book provides a broad introduction to the field of differentiable and Riemannian manifolds, tying together classical and modern formulations. It introduces manifolds in a both streamlined and mathematically rigorous way while keeping a view toward applications, particularly in physics.

The author takes a practical approach, containing extensive exercises and focusing on applications, including the Hamiltonian formulations of mechanics, electromagnetism, string theory.

The Second Edition of this successful textbook offers several notable points of revision.

New to the Second Edition:

  • New problems have been added and the level of challenge has been changed to the exercises
  • Each section corresponds to a 60-minute lecture period, making it more user-friendly for lecturers
  • Includes new sections which provide more comprehensive coverage of topics
  • Features a new chapter on Multilinear Algebra

Meer oor die skrywer

Stephen Lovett is a Professor of Mathematics at Wheaton College in Illinois. He has also taught at Eastern Nazerene College. He holds a PhD from Northeastern University. He also authored three well-received texts with CRC Press, including the companion volume, Differential Geometry of Curves and Surfaces, Second Edition, with Tom Banchoff and Abstract Algebra: Structures and Applications.

Gradeer hierdie e-boek

Sê vir ons wat jy dink.

Lees inligting

Slimfone en tablette
Installeer die Google Play Boeke-app vir Android en iPad/iPhone. Dit sinkroniseer outomaties met jou rekening en maak dit vir jou moontlik om aanlyn of vanlyn te lees waar jy ook al is.
Skootrekenaars en rekenaars
Jy kan jou rekenaar se webblaaier gebruik om na oudioboeke wat jy op Google Play gekoop het, te luister.
E-lesers en ander toestelle
Om op e-inktoestelle soos Kobo-e-lesers te lees, moet jy ’n lêer aflaai en dit na jou toestel toe oordra. Volg die gedetailleerde hulpsentrumaanwysings om die lêers na ondersteunde e-lesers toe oor te dra.