Differential Geometry

· Moscow Lectures 8 knyga · Springer Nature
El. knyga
271
Puslapiai
Įvertinimai ir apžvalgos nepatvirtinti. Sužinokite daugiau

Apie šią el. knygą

This book combines the classical and contemporary approaches to differential geometry. An introduction to the Riemannian geometry of manifolds is preceded by a detailed discussion of properties of curves and surfaces.

The chapter on the differential geometry of plane curves considers local and global properties of curves, evolutes and involutes, and affine and projective differential geometry. Various approaches to Gaussian curvature for surfaces are discussed. The curvature tensor, conjugate points, and the Laplace-Beltrami operator are first considered in detail for two-dimensional surfaces, which facilitates studying them in the many-dimensional case. A separate chapter is devoted to the differential geometry of Lie groups.


Apie autorių

Victor Prasolov, born 1956, is a permanent teacher of mathematics at the Independent University of Moscow. He published two books with Springer, Polynomials and Algebraic Curves. Towards Moduli Spaces (jointly with M. E. Kazaryan and S. K. Lando) and eight books with AMS, including Problems and Theorems in Linear Algebra, Intuitive Topology, Knots, Links, Braids, and 3-Manifolds (jointly with A. B. Sossinsky), and Elliptic Functions and Elliptic Integrals (jointly with Yu. Solovyev).


Įvertinti šią el. knygą

Pasidalykite savo nuomone.

Skaitymo informacija

Išmanieji telefonai ir planšetiniai kompiuteriai
Įdiekite „Google Play“ knygų programą, skirtą „Android“ ir „iPad“ / „iPhone“. Ji automatiškai susinchronizuojama su paskyra ir jūs galite skaityti tiek prisijungę, tiek neprisijungę, kad ir kur būtumėte.
Nešiojamieji ir staliniai kompiuteriai
Galite klausyti garsinių knygų, įsigytų sistemoje „Google Play“ naudojant kompiuterio žiniatinklio naršyklę.
El. knygų skaitytuvai ir kiti įrenginiai
Jei norite skaityti el. skaitytuvuose, pvz., „Kobo eReader“, turite atsisiųsti failą ir perkelti jį į įrenginį. Kad perkeltumėte failus į palaikomus el. skaitytuvus, vadovaukitės išsamiomis pagalbos centro instrukcijomis.