Differential Geometry

· Moscow Lectures 8. kötet · Springer Nature
E-könyv
271
Oldalak száma
Az értékelések és vélemények nincsenek ellenőrizve További információ

Információk az e-könyvről

This book combines the classical and contemporary approaches to differential geometry. An introduction to the Riemannian geometry of manifolds is preceded by a detailed discussion of properties of curves and surfaces.

The chapter on the differential geometry of plane curves considers local and global properties of curves, evolutes and involutes, and affine and projective differential geometry. Various approaches to Gaussian curvature for surfaces are discussed. The curvature tensor, conjugate points, and the Laplace-Beltrami operator are first considered in detail for two-dimensional surfaces, which facilitates studying them in the many-dimensional case. A separate chapter is devoted to the differential geometry of Lie groups.


A szerzőről

Victor Prasolov, born 1956, is a permanent teacher of mathematics at the Independent University of Moscow. He published two books with Springer, Polynomials and Algebraic Curves. Towards Moduli Spaces (jointly with M. E. Kazaryan and S. K. Lando) and eight books with AMS, including Problems and Theorems in Linear Algebra, Intuitive Topology, Knots, Links, Braids, and 3-Manifolds (jointly with A. B. Sossinsky), and Elliptic Functions and Elliptic Integrals (jointly with Yu. Solovyev).


E-könyv értékelése

Mondd el a véleményedet.

Olvasási információk

Okostelefonok és táblagépek
Telepítsd a Google Play Könyvek alkalmazást Android- vagy iPad/iPhone eszközre. Az alkalmazás automatikusan szinkronizálódik a fiókoddal, így bárhol olvashatsz online és offline állapotban is.
Laptopok és számítógépek
A Google Playen vásárolt hangoskönyveidet a számítógép böngészőjében is meghallgathatod.
E-olvasók és más eszközök
E-tinta alapú eszközökön (például Kobo e-könyv-olvasón) való olvasáshoz le kell tölteni egy fájlt, és átvinni azt a készülékre. A Súgó részletes utasításait követve lehet átvinni a fájlokat a támogatott e-könyv-olvasókra.