Differential Equations with Mathematica

· Academic Press
eBook
640
Páginas
Apto
Las valoraciones y las reseñas no se verifican. Más información

Información sobre este eBook

Differential Equations with Mathematica presents an introduction and discussion of topics typically covered in an undergraduate course in ordinary differential equations as well as some supplementary topics such as Laplace transforms, Fourier series, and partial differential equations. It also illustrates how Mathematica is used to enhance the study of differential equations not only by eliminating the computational difficulties, but also by overcoming the visual limitations associated with the solutions of differential equations. The book contains chapters that present differential equations and illustrate how Mathematica can be used to solve some typical problems. The text covers topics on differential equations such as first-order ordinary differential equations, higher order differential equations, power series solutions of ordinary differential equations, the Laplace Transform, systems of ordinary differential equations, and Fourier Series and applications to partial differential equations. Applications of these topics are provided as well. Engineers, computer scientists, physical scientists, mathematicians, business professionals, and students will find the book useful.

Valorar este eBook

Danos tu opinión.

Información sobre cómo leer

Smartphones y tablets
Instala la aplicación Google Play Libros para Android y iPad/iPhone. Se sincroniza automáticamente con tu cuenta y te permite leer contenido online o sin conexión estés donde estés.
Ordenadores portátiles y de escritorio
Puedes usar el navegador web del ordenador para escuchar audiolibros que hayas comprado en Google Play.
eReaders y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos de Kobo, es necesario descargar un archivo y transferirlo al dispositivo. Sigue las instrucciones detalladas del Centro de Ayuda para transferir archivos a lectores de libros electrónicos compatibles.